
AI & Machine Learning
at MotherDuck



Who is MotherDuck…

Founded in : May 2022

General Availability : June 2024

Employees: 55

Locations: Seattle HQ, SF, NYC, Amsterdam

Funding: $100M Series B

DuckDB Labs Partnership 

Amsterdam Offsite 2024
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DESIGNING SYSTEMS FOR THE POST-BIG 
DATA WORLD

+ Leverage Local Compute and Storage
+ Leverage Cloud for Scale up and 

Collaboration
+ Avoid the big data tax

Cloud / 
Single Node

Object Store

Laptop



LOCAL 
COMPUTE 
MOSTLY JUST 
SITS IDLE
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DISTRIBUTED 
COMPUTE IS 
STILL PAINFUL

2 worker nodes processing bottles
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Time

2006 2023

1 core
2G RAM

160GB HD

Standard 
Instance

64 core
256G RAM

Memory
Optimized

448 core
24T RAM

SINGLE 

NODE CLOUD 

COMPUTE IS 

REALLY 

POWERFUL
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DuckDB Extension for 
Scale Up & Collaboration

Web UI 

Wasm

Duckling

DuckDB

Client (e.g Python)

MD Server Ext

DuckDB

MD Client Ext.

DuckDB

MD Client Ext.

Note-
books

Data

MotherDuck
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Using MotherDuck - As simple as..
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Web UI - 
app.motherduck.com
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And there is more… 
Partner Ecosystem
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And there is more… 
WASM SDK for Low-Latency Data Apps
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https://github.com/motherduckdb/wasm-client/tree/main 

https://www.npmjs.com/package/@motherduck/wasm-client 

https://github.com/motherduckdb/wasm-client/tree/main
https://www.npmjs.com/package/@motherduck/wasm-client


And there is more… 
AI
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https://github.com/motherduckdb/wasm-client/tree/main/data-app-generator 

https://github.com/motherduckdb/wasm-client/tree/main/data-app-generator
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NL to SQL

Embeddings & Vector 
Search

Text Processing with 
LLMs in SQL

Classical
Machine Learning



Let’s Start With A Quiz

● get all columns ending with _amount from taxi table

● get a 10% reservoir table sample of rideshare table

● show summary statistics of rideshare table

https://huggingface.co/spaces/motherduckdb/DuckDBNSQL7B 
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https://huggingface.co/spaces/motherduckdb/DuckDB-NSQL-7B
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https://huggingface.co/sql-console 

https://huggingface.co/sql-console


Business Users Data Engineers &
DBA’s

Ask Questions Analyze Data Read, Transform, Write 
and Provision Data

Business Knowledge
SQL Knowledge

Data Knowledge

Data Analysts & 
Data Scientists

Software Engineers
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The Dawn of Natural Language to SQL: Are We Fully Ready? Boyan Li, Yuyu 
Luo, Chengliang Chai, Guoliang Li, and Nan Tang, VLDB 2024



Business Users Data Analysts & 
Data Scientists

Data Engineers &
DBA’s

Text-2-SQL + 
Retrieval

Ask Questions Analyze Data Read, Transform, Write 
and Provision Data

● Drafts for Analytical Queries
● Requires Data & SQL 

Knowledge for Verification 

Software Engineers
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Business Users Data Analysts & 
Data Scientists

Data Engineers &
DBA’s

Text-2-SQL + 
Retrieval

Ask Questions Analyze Data Read, Transform, Write 
and Provision Data

● Simple DuckDB SQL snippets 
for any type of statements

● Saves round trip to docs
● Not suitable for complex 

analytical queries

Software Engineers

DuckDB-NSQL

20



Business Users Data Analysts & 
Data Scientists

Data Engineers &
DBA’s

Text-2-x Text-2-SQL + 
Retrieval

Ask Questions Analyze Data Read, Transform, Write 
and Provision Data

● Regular NL2SQL not a fit
● Built-in Semantic Correctness
● Requires making tribal data 

knowledge explicit (lot of work!)

Software Engineers

DuckDB-NSQL
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● Drafts for Analytical Queries
● Requires Data & SQL 

Knowledge for Verification 

https://www.malloydata.dev/ 

https://www.malloydata.dev/


DuckDB-NSQL

Business Users Data Analysts & 
Data Scientists

Other SQL 
Assistance

Text-2-SQL + 
Retrieval

● Focus on Dev. Experience
● Support for DDL / DML / 

ETL-Tasks

Ask Questions Analyze Data Read, Transform, Write 
and Provision Data

Software Engineers

Data Engineers &
DBA’s
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● Drafts for Analytical Queries
● Requires Data & SQL 

Knowledge for Verification 

Text-2-Semantic 
Layer

● Regular NL2SQL not a fit
● Built-in Semantic Correctness
● Requires making tribal data 

knowledge explicit (lot of work!)



SQL Assistance in MotherDuck
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SQL Assistance in MotherDuck
24

Question

Schema
Validation Response

❌
✅
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NL to SQL

Embeddings & Vector 
Search

Text Processing with 
LLMs in SQL

Classical
Machine Learning



Get Real: How Benchmarks Fail to Represent the Real 
World, Vogelsgesang et al., Tableau Software, DBTest ‘18

Why TPC Is Not Enough: An Analysis of the Amazon Redshift 
Fleet, van Renen et al., AWS, VLDB 2024

50% of database columns in the real world are strings!
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SLMs

Costs per Token 

have fallen 

dramatically in 

the past years.

* blended rate that assumes 80% input and 20% output tokens

-99.7%
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Small Language 

Models have 

become powerful.

GPT-4o-mini

https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu 

Llama 3.2 3B
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https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu


Prompt language 

models with

your database.

Support for 

Structured Output.

Launches w. OpenAI 

integration.

 
Prompt language 

models in SQL.
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Text Summarization
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Structured Data Extraction
31



Structured Data Extraction
32



Structured Data Extraction
33



Pre-Trained Language Models are the swiss army knife of NLP

Data Cleaning Data 
Transformation

Sentim
ent Analysis

Topic Modeling

Tr
an

sla
tio

n

Entity Matching

Named Entity Recognition

Information Extraction

Summarization
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Missing Value 

Imputation



 
Open Models & 

Local Inference 

are on the rise.



 
Open Models & 

Local Inference 

are on the rise.
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https://webllm.mlc.ai/ 

https://webllm.mlc.ai/


Dual Execution

select * 
from T,S,R 
where T.id=S.id AND S.id=R.id

This example is taken from the Morsel-Driven Parallelism , which DuckDB is based on.
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https://15721.courses.cs.cmu.edu/spring2017/papers/17-execution/p743-leis.pdf


Dual Execution

select * 
from T,S,R 
where T.id=S.id AND S.id=R.id

This example is taken from the Morsel-Driven Parallelism , which DuckDB is based on.

O Local
O Remote
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https://15721.courses.cs.cmu.edu/spring2017/papers/17-execution/p743-leis.pdf


select * 
from T,S,R 
where T.id=S.id AND S.id=R.id

This example is taken from the Morsel-Driven Parallelism , which DuckDB is based on.

O Local
O Remote

Dual Execution
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https://15721.courses.cs.cmu.edu/spring2017/papers/17-execution/p743-leis.pdf


select * 
from T,S,R 
where T.id=S.id AND S.id=R.id

This example is taken from the Morsel-Driven Parallelism , which DuckDB is based on.

O Local
O Remote

Dual Execution
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https://15721.courses.cs.cmu.edu/spring2017/papers/17-execution/p743-leis.pdf


select * 
from T,S,R 
where T.id=S.id AND S.id=R.id

This example is taken from the Morsel-Driven Parallelism , which DuckDB is based on.

O Local
O Remote

S ⨝ R  is small, T is large

Dual Execution
41

https://15721.courses.cs.cmu.edu/spring2017/papers/17-execution/p743-leis.pdf


Web UI 

Wasm

Duckling

DuckDB

Client (e.g Python)

MD Server Ext

DuckDB

MD Client Ext.

DuckDB

MD Client Ext.

Note-
books

Data

transformer.js / WebLLM

vLLM / Ollama

Inference Service

Dual Execution for Prompt & Embedding Inference
42
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NL to SQL

Embeddings & Vector 
Search

Text Processing with 
LLMs in SQL

Classical
Machine Learning



Prompt language 

models with

your database.

Support for 

Structured Output.

Launches w. OpenAI 

integration.

 
Compute 

Embeddings in 

SQL.
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Similarity Search
45



Prompt + Embedding = Retrieval Augmented Generation (RAG) 46
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Check out the docs at:
https://motherduck.com/docs/

Or try it out on:
app.motherduck.com 

Free Trial (30 days):
● ~ 40k prompts / day
● ~ 1M embeddings / day 

https://motherduck.com/docs/sql-reference/motherduck-sql-reference/ai-functions/prompt/
https://app.motherduck.com


Vector Search: Naiive Search, HNSW, IVFFlat
48

Naiive Search (https://duckdb.org/docs/sql/functions/array.html#array_cosine_similarityarray1-array2)
   ➕ No Index Maintenance
   ➕ 100% Retrieval Accuracy
   ➕ < 1s lookup times with up to 2M rows in DuckDB (Mac M2 Pro)
   ➖ Lookup times scale linearly with dataset size

IVFFlat (https://community-extensions.duckdb.org/extensions/faiss.html)
   ➕ Low memory footprint (only save one cluster-id per row)
   ➕ Index creation is fast 
   ➖ incremental updates require re-computation of centroids to maintain recall → not ideal for frequent updates
   ➖ lower QPS than HNSW (~ factor 10x)
   ➖ lower recall than HNSW for large datasets
   ➖ faiss extension still in early stages

HNSW: (https://duckdb.org/docs/extensions/vss.html)
   ➕ High recall & QPS even on large datasets (>10M entries)
   ➕ Index is relatively robust to updates
   ➖ Index building takes time (~300s for a 2M row index)
   ➖ Large memory footprint (roughly 0.75x of the embedding size)

https://duckdb.org/docs/sql/functions/array.html#array_cosine_similarityarray1-array2
https://community-extensions.duckdb.org/extensions/faiss.html
https://duckdb.org/docs/extensions/vss.html
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https://motherduck.com/blog/search-using-duckdb-part-3/ 

Hybrid Search

https://motherduck.com/blog/search-using-duckdb-part-3/
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NL to SQL

Embeddings & Vector 
Search

Text Processing with 
LLMs in SQL

Classical
Machine Learning



Machine Learning in A Data Warehouse
51

Finding Datasets Cleaning Data Join, Filter, Aggregate
Machine 
Learning Transformations Feature Selection



Linear Regression
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https://duckdb.org/docs/sql/functions/aggregates.html#regr_slopey-x 

https://duckdb.org/docs/sql/functions/aggregates.html#regr_slopey-x


K-Means Clustering in DuckDB
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Decision Trees in DuckDB
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https://github.com/JoinBoost/JoinBoost 

https://github.com/JoinBoost/JoinBoost


55Data Cleaning and Wrangling



56Data Cleaning and Wrangling



57Data Cleaning and Wrangling



MSc. Thesis @ MotherDuck



Thank you. Questions?



app.motherduck.com


