Dredev 2023-11-09

DuckDB

Harnessing in-process analytics
for data science and beyond

Gabor Szarnyas
Developer Relations Advocate

O DuckDB Labs

About me

Gabor Szarnyas
e 2014-2023: PhD + postdoc
 Research: benchmarks, graph processing

DuckDB Labs
e Startup with =18 people
» Based in Amsterdam DuckDB Labs

https://szarnyasg.github.io/
https://duckdblabs.com/

Context

DHH &
@dhh

@

The fact that mainstream developer laptops
now ship with 16-core, 3Snm CPUs is one of
those THE PREMISE CHANGED fundamentals
[...].

Time to reconsider some fundamentals

of where things run, how, and when.

6:15 PM - Oct 31, 2023

New
&€ M3
MAX

16-core CPU

40-core GPU

48GB Unified Memory
1TB SSD Storage’

DuckDB is an analytical database system
built for powerful end-user devices

DuckDB's key properties

An analytical SQL database
Built to be portable and fast
Developed since 2018
Written in C++11

Open-source under the MIT license

o

In-process

Fast

Portable

®

Open-source

Deployment *
model

Client-server setup

Client application

import psycopg

con = psycopg.connect (
host="3.218.70.181",
user="your_user'",

password="your_password",

dbname="your_db"

)
con.execute("SELECT ...")

Connection setup
and authentication

<€ >
Client protocol

Bottleneck

Pay for,

configure,

operate

Database server

Client-server setup

Client application
import psycopg

con = psycopg.connect (
- 1329870181
user="admin",
password="admin",
dbname="your_db"

)

con.execute("SELECT ...

Impractical!

<€ >
Client protocol

Still a bottleneck

Database server

Run in a container, need to
configure, adjust ports, ...

In-process setup

import duckdb

Client application

duckdb.sql("SELECT ...")

No configuration
No authentication
No client protocol

In-process setup

Client application

import duckdb
duckdb.sql("SELECT ...")
for persistence

con = duckdb.connect("my.db")
con.sql("SELECT ...")

%the

~—
—
-—
I
-

No configuration
No authentication
No client protocol

Single-file format
containing all tables

Database systems

In-process

Client-server

%the

MyR

PostgreSQOL

Transactional

o

DuckDB

VERTICA

Analytical

Portable

Installing DuckDB

You can get started with DuckDB in <15 seconds on most popular platforms

This includes:

e Typing the commands

 Downloading the packages from the internet
e Launching DuckDB

macOS: Python package Windows: R package ‘

. q Console Terminal Background Jobs !
- ev. %
R R432 - ~/

> |

...and more

P 0ip install duckdb ﬂ\i@dﬁ' npm install duckdb
R install.packages("duckdb") <> org.duckdb:duckdb_jdbc
<

Pkg.add("DuckDB")

A

@ cargo add duckdb

Why Is installation so fast?

DuckDB has zero external dependencies | -
Dependencies are vendored in the codebase

Pure C/C++ codebase

Portable anywhere with a C++11 compiler

Small binary packages

>

third_party

catch
concurrentqueue
fast_float
fastpforlib

fmt

fsst

httplib
hyperloglog
imdb
jaro_winkler

libpg_query

mbedtls

miniz
parquet
PCg

re2
snappy
snowball
tdigest
thrift/thrift
tpce-tool
utf8proc

zstd

WebAssembly (Wasm)

C @ shell.duckdb.org

duckdb> SELECT avg(temp_hi) AS avg_hi_temp
...> FROM weather

...> LEFT OUTER JOIN cities ON weather.city = cities.name;
.

avg_hi_temp

Elapsed: 24 ms

Fast

CSV reader performance @

Test data: LDBC social network data set Setup: M2Pro CPU, 32GB RAM, DuckDB v0.9.1

3.4 GB 3.2s 1GB

35 GB 27's 10 GB

~3.95X compression
360 GB 4 minod4s 104 GB

>1.2 GB/s for reading CSV,
parsing, and writing to DuckDB

Demo

Internals cﬁ

Storage

time

row-based

id content

length

time

column-based

id content

length

Storage

row-based column-based

id content length time id content length

Storage

row-based column-based

time id content length time id content length

Execution

row-based column-based

time id content length time id content length

tuple-at-a-time column-at-a-time

id content length id content length

Execution

row-based column-based

time id content length time id content length

tuple-at-a-time column-at-a-time vectorized

time id content length time id content length time id content length

Vectorized execution

thread 1
vectorized L1 cache

time id content length

thread 2
L1 cache

Vectorized execution

thread 1

vectorized L1 cache

time id content length

thread 2

L1 cache

Vectorized execution

thread 1

vectorized L1 cache

time id content length

thread 2

L1 cache

Vectorized execution

thread 1
vectorized

L1 cache

time id content length

thread 2

L1 cache

Indexing: Zone maps

For each column, DuckDB creates zone maps (a.k.a. min-max indexes)

min max
Nov 7 Nov 8
min max
Nov8 | Nov12

time

Nov 7

Nov 7

Nov 8

Nov 8

Nov 8
Nov 9
Nov 11

Nov 11

id

content

length
74
109 min max
67 63 109
63
95
113 min max
14 8 95

Indexing with the Adaptive Radix Tree (ART)

DuckDB supports secondary indexes:
o Implicit iIndexes - primary key, foreign key, unigue
o explicit indexes — CREATE [UNIQUE] INDEX

Tradeoffs:
e speed-up for high selectivity lookups
e negative performance impact for updates

Rule of thumb:
Most of the time indexes are not needed

Larger-than-memory execution: Joins and aggregations ‘

Larger-than-memory execution me(s)
e Graceful degradation 14
o Always try to finish

10.5
Example:
e TPC-H SF100 f
e Query7
3.5
0

24 22 20 18 16 14 12 10 8 6 4 2

memory limit (GB)

Feature-rich 0(

Input and output formats

. | oy

ﬁlpandas

CSV

O :

DUCKDB Ji™ Polars

Parquet

JSON

db

Query language

PostgreSQL dialect:
SELECT *
_ FROM grades grades_parent
° Subquerles WHERE grade=
. : (SELECT MIN(grade)
o Window functions M grades

WHERE grades.course=grades_parent.course)

e« Common table extensions

e Lateral j0IN
ateral joins SELECT "Plant", "Date",

« Range joins AVG("MWh") OVER (
. PARTITION BY "Plant"
» AsOf joins ORDER BY "Date" ASC

RANGE BETWEEN INTERVAL 3 DAYS PRECEDING
AND INTERVAL 3 DAYS FOLLOWING)
AS "MWh 7-day Moving Average"
FROM "Generation History"

"Friendly SQL" extensions ORDER BY 1, 2

e Pivoting and unpivoting tables

DuckDB SQL: FROM-first syntax

Common pattern:

SELECT =
FROM Comment:

Friendly variant:

FROM Comment;

DuckDB SQL: EXCLUDE columns

Common pattern:

SELECT
creationDate, 1d, locationIP, browserUsed, content,

length, CreatorPersonlId, LocationCountrylId
FROM Comment;

Friendly variant:

SELECT * EXCLUDE (ParentCommentId, ParentPostId)
FROM Comment;

DuckDB SQL: GROUP BY ALL

Common pattern:

SELECT month(creationDay), count(x) AS numComments
FROM Comment;

-=> Syntax error

Friendly variant:

SELECT month(creationDay), count(x) AS numComments
FROM Comment
GROUP BY ALL;

Extensions "

Data sources and destinations

PostgreSQL

s3://
DuckDB

gcs://

db

Extensions

e Powerful extension mechanism:
o new types and functions = READMEME

o data formats DuckDB Extension Template «
o operators

This repository contains a template for creating a DuckDB

O SQ L SyntaX extension. The main goal of this template is to allow users to
easily develop, test and distribute their own DuckDB
© memOry al |OCE\1IOI‘ extension. The main branch of the template is always based

on the latest stable DuckDB allowing you to try out your
extension right away.

e Many DuckDB features are |
Implemented as extensions Getting started «

O htt pfS First step to getting started is to create your own repo from
this template by clicking Use this template . Then clone

O JSO N your new repository using
o Parquet

glit clone —-recurse-submodules https://github (& 7.

https://github.com/duckdb/extension-template

Parquet + httpfs extensions to query stock data

SELECT avg(price)
FROM 'https://duckdb.org/data/prices.parquet’
WHERE ticker = 'MSFT';

avg(price)
double

2.0

It's not a full download:
e HT TP range requests so seek to the required data
e Only touch the ticker and price columns

Spatial extension

o Adds PostGIS-like functionality: geospatial types for points, polygons, etc.
o Adds functions for calculating distances

Example: aerial distance on the New York taxi data set

SELECT
st _point(pickup_latitude, pickup_longitude) as pickup_point,
st _point(dropoff_latitude, dropoff_longitude) as dropoff_point,
dropoff_datetime:: TIMESTAMP - pickup_datetime::TIMESTAMP AS time,

trip_distance,

st distance(
st _transform(pickup_point, 'EPSG:4326', 'ESRI:102718'),

st_transform(dropoff_point, 'EPSG:4326', 'ESRI:102718')) / 5280 AS aerial_distance,
trip _distance - aerial_distance AS diff

FROM rides
WHERE diff > 0
ORDER BY diff DESC:

Dredev 2023-11-09

DuckDB

Harnessing in-process analytics
for data science and beyond

Gabor Szarnyas
Developer Relations Advocate

O DuckDB Labs

Dredev 2023-11-09

DuckDB

Harnessing in-process analytics
for data science and beyond

Gabor Szarnyas
Developer Relations Advocate

O DuckDB Labs

Modernizing a graph algorithm benchmark o

R1

R2

Context:
Graph benchmark from 2015 (legacy codel)
Goal: find connected components quickly

Validation rule:
The result encode equivalence classes (R1=R2)

Problem:
The validation became very slow for large graphs
(single-threaded Java code building hashmaps)

Modernizing a graph algorithm benchmark

"‘E szarnyasg commented on Aug 24, 2022 - edited v | Member

Wil fix #205.
We can use the DuckDB appender to populate the tables.

Current validation scripts are in:

o https://github.com/ldbc/ldbc_graphalytics/tree/master/graphalyti

cs-core/src/main/java/science/atlarge/graphalytics/validation

o https://github.com/ldbc/ldbc_graphalytics/tree/master/graphalyti

Cs-
core/src/main/java/science/atlarge/graphalytics/validation/rule

A lot of time is spent parsing the results back from CSVs to Java
data structures, this could also be improved by using DuckDB's

R2

+338 -457 IHER

Output validation using matching in SQL #271/

ndl VG g B szarnyasg merged 10 commits into main from output-validation-using-matching

L) Conversation © -0- Commits 10) Checks 1 Files changed 25

Reviewers

No reviews

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milactnna

https://github.com/ldbc/ldbc_graphalytics/pull/217
https://github.com/ldbc/ldbc_graphalytics/pull/217

More benchmark framework use cases ‘

 Output validation Feature/fix operation stream loading #165
® Loading OperatiOn StreamS szarnyasg merged 19 commits into main from feature/fix-operation-stream-loading
¢ Query parameter generathn L) Conversation 0 -0- Commits 19) Checks 0 Files changed 102

 Reading input parameters
ﬁ GLaDAP commented on Jun 23, 2022 - edited «~ Member = **° Reviewers
e Preprocessing raw data - [—
This PR contains the following:
®
Pa rtItIOn I ng u pdate St reams e QueryEventStreams are merged into 1 class Assignees
° AnaIyZ| ng resuy I-tS 8 Operétion streams arc? loaded using DuckDB No one assigned
e Queries moved to their own namespace
Labels
_ _ E+ GLaDAP added 19 commits last year None yet
None of this is a DB problem...
-O- A Move queries to separate namespace 5bf4581 _
f Projects
-O- i Add DuckDb for CSV parsing 3c6f682 None yet

+1,634 -5 270 EEEE

https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165
https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165

More benchmark framework use cases ‘

» Output validation Feature/fix operation stream loading #165
® LOadlng OperatIOn StreamS szarnyasg merged 19 commits into main from feature/fix-operation-stream-loading
¢ Query parameter generathn L) Conversation 0 -0- Commits 19 [F]l Checks o0 Files changed 102

 Reading input parameters .
ﬁ GLaDAP commented on Jun 23, 2022 . edited ~ Member = °°° Reviewers
e Preprocessing raw data - [—
This PR contains the following:
®
Pa rtItIOn I ng u pdate St reams e QueryEventStreams are merged into 1 class Assignees
° Ana IyZ| ng resuy I-tS 8 Operr:-ltion streams arc? loaded using DuckDB No one assigned
e Queries moved to their own namespace
Labels
_ _ E+ GLaDAP added 19 commits last year None yet
None of this is a DB problem...
-O- A Move queries to separate namespace 5bf4581 ,
! Projects
-O- i Add DuckDb for CSV parsing 3c6f682 None yet

But they are bulky operations
on heavily structured data. +1,634 -5,270 EEER

https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165
https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165

Use cases

.

'
' Y N

7
=

Saving costs:
e Replacing (parts of) data warehouse jobs
« Running computation locally

Building block in applications:
e Just to perform a simple step
e E.g., converting from Parquet to CSV

Education:
o Easy-to-install, open, standards-compliant system
 No configuration, no DBA

Limitations

Concurrency control

o ACID compliance via multi-version concurrency control (MVCC)
« WAL (write-ahead log) for recovery
 Not a good fit for write-heavy transactional workloads

RW

Distributed execution @

DuckDB only supports single-node execution

Client application

DuckDB can scale up:

e r6id.32xlarge instances have 1TTB RAM for <$10/h
e x1e.32xlarge instances have 4TB RAM for =$28/h
Store the data in S3, run short bursts of workloads

Larger than memory execution allows scaling for TBs EEHHEEEEEEEEEEE

For tens of TBs, a distributed setup is beneficial

The DuckDB landscape

DuckDB versions

v0.9 Current version

DuckDB versions

v0.9 Current version

v0.10 Early next year

DuckDB versions

v0.9 Current version

v0.10 Early next year

v1.0 Later next year

DuckDB versions

v0.9

v0.10

V1

.0

Current version

Early next year

Later next year

-
-
o

v1.0

Stable file format

Stability and maturity
Improvements

Performance
optimizations

Organizations around DuckDB

Q DuckDB €@ DuckDB Labs

MotherDuck

Wrapping up...

DuckDB is old-school with state of the art internals

Classic open-source project
Full-fledged CLI client

Works when you're offline DuckDB Documentation

DuckDB version 0.9.0
Generated on 2023-09-26 at 13:31 UTC

No vendor lock-In

EXPORT DATABASE 'my_db' (FORMAT CSV);
EXPORT DATABASE 'my_db' (FORMAT PARQUET);

o

https://duckdb.org/duckdb-docs.pdf

o

Give DuckDB a spin!

Google Colab, shell.duckdb.org

cO & DuckDB_in_Jupyter_Notebooks.ipynb < C' @ shell.duckdb.org

File Edit View Insert Runtime Tools Help Changes will not be saved

DuckDB Web Shell

+ Code + Text ¢> Copy to Drive Database: v0.9.1
Package: @duckdb/duckdb-wasm@1.27.1-dev134.0

~ Connecting to DuckDB

Q Connected to a local transient in-memory database.
Connect jupysql to DuckDB using a SQLAlchemy-style connection string. Enter .help for usage hints.
) duckdb> FROM 'https://
[1 %sql duckdb:///:memory: | |
- # %sql duckdb:///path/to/file.db ticker : when
2001-01-01 L
. 2001-01-01 2
~ Querying DuckDB 2001-071-01 .
2001-01-01 1
Single line SQL queries can be run using %sql at the start of a line. Quer 2001-01-01 2
highlighting! 2001-01-01 3
I] 2001-01-01 L
2001-01-01 2
[1 %sql SELECT 'Off and flying!' as a_duckdb_column 2001-01-01 3
a_duckdb_column ELEIPECRIE 4O IE
<>

0 Off and flying! duckdb> |

https://shell.duckdb.org/

Stay in touch

X &

discord.duckdb.org @duckdb duckdb.org

More DuckDB features

« Pandas-like relational API

e pySpark-compatible API

e Vectorized UDFs in Python

e |ceberg support

e JSON shredding

e ENnum support

o Full text search

e dplyr integration

e Importing Hive-partitioned data

e dbt support
e Go client, Swift client, etc.

https://duckdb.org/docs/api/python/relational_api
https://duckdb.org/docs/extensions/iceberg
https://duckdb.org/2023/03/03/json.html
https://duckdb.org/2021/11/26/duck-enum.html
https://duckdb.org/2021/01/25/full-text-search.html
https://duckdb.org/docs/api/r.html
https://duckdb.org/docs/data/partitioning/hive_partitioning.html
https://github.com/duckdb/dbt-duckdb
https://github.com/marcboeker/go-duckdb
https://duckdb.org/2023/04/21/swift.html

