
DuckDB:
Crunching data anywhere,

from laptops to servers

Dr. Gábor Szárnyas 2024-06-12

About me

PhD
2014–2019

graph databases

postdoc
2020–2023

database benchmarks

developer relations
2023–

DuckDB database

What is
DuckDB?

DuckDB = an analytical database management system
for processing 100 GB+ data sets on end-user devices

Microsoft Copilot+
up to 12 cores

Apple MacBook Pro
up to 16 cores

DuckDB's key values

Fast Feature-richFreeSimple

Demo data set

Open railway datasets:
• train services
• stations
• distances

https://www.rijdendetreinen.nl/en

Demo

What we did not do

Simple

We did not

Register an account

Start a server /
Configure a client

What we did not do

FreeSimple

We did not

Register an account

Start a server /
Configure a client

We also did not

Enter credit card details

Ask for a quota increase

Analyze 15GB data
in seconds

What we did

Fast

Performance

Boost from 5 years → 200 years of services

• 600 GB CSV files = 5.4 billion rows
• Load time: 16 minutes
• Aggregation: 22 seconds

Fast

Features

Fast Feature-rich

Features

Full SQL support: PostgreSQL dialect
Plus "friendly" SQL extensions

...back to the demo

Fast Feature-rich

More characteristics of DuckDB

ExtensiblePortable ErgonomicIn-process

In-process
architecture

Client application

Client-server architecture

Client application

In-process architecture

Truly serverless!

Client application

In-process architecture

my.db
Single-file
database format

Database systems

Transactional Analytical

Client–server

In-process

Internals:
Storage and execution

column-based storagerow-based storage

Storage

date id type station date id type station

column-based storagerow-based storage

Storage

date id type station date id type station

column-based storagerow-based storage

Storage

date id type station date id type station

column-at-a-time executiontuple-at-a-time execution

column-based storagerow-based storage

Execution

date id type station date id type station

date id type station date id type station

vectorized execution
date id type station

column-at-a-time executiontuple-at-a-time execution

column-based storagerow-based storage

Execution

date id type station date id type station

date id type station date id type station

thread 1

thread 2

vectorized execution

Vectorized execution

L1 cache

L1 cache

2 row groups

date id type station

vectorized execution

thread 2
L1 cache

L1 cache
thread 1

Vectorized execution

2 row groups

date id type station

L1 cache

Vectorized execution

L1 cache

thread 2

thread 1
vectorized execution

2 row groups

date id type station

L1 cache
thread 2

L1 cache
thread 1

Vectorized execution

vectorized execution

Modern compilers
auto-vectorize code

using SIMD instructions

Vectors fit into
the L1 cache (32–128kB)

2 row groups

date id type station

Some relational
operators (e.g., join)

need hash tables

 min

 max

date id type station

Indexing: Zonemaps

Zonemaps (min-max indexes) are created for each column in each row group

1 Intercity

2 Sprinter

3 ICE Intl

4 Intercity

date id type station
May 30

May 30

May 31

May 31

5 Sprinter

6 Sprinter

7 Intercity

8 Intercity

June 1

June 1

June 1

June 2

Ams C

Utrecht

Ams C

Schiphol

Schiphol

Utrecht

Utrecht

Ams C

 min

 max

1 ICE Intl

4 Sprinter

May 30

May 31

Ams C

Utrecht

5 Intercity

8 Sprinter

June 1

June 2

Ams C

Utrecht

row group 1 row group 2

Portability

DuckDB is written in C++11

No external dependencies

Instead: a few inlined dependencies

→ DuckDB is very portable

Portability

DuckDB clients

brew install duckdb

npm install duckdb

cargo add duckdb

org.duckdb:duckdb_jdbc

pip install duckdb

install.packages("duckdb")

WebAssembly: DuckDB in the browser

Ergonomic

Supported formats and protocols

JSON

Parquet

CSV

Iceberg

Delta

s3://http(s):// azure://

 min

 max

date id type station

Partial reading on Parquet

Parquet files also have zonemaps
These can be used for HTTP range requests (https://, s3://, etc.)

1 Intercity

2 Sprinter

3 ICE Intl

4 Intercity

date id type station
May 30

May 30

May 31

May 31

5 Sprinter

6 Sprinter

7 Intercity

8 Intercity

June 1

June 1

June 1

June 2

Ams C

Utrecht

Ams C

Schiphol

Schiphol

Utrecht

Utrecht

Ams C

 min

 max

1 ICE Intl

4 Sprinter

May 30

May 31

Ams C

Utrecht

5 Intercity

8 Sprinter

June 1

June 2

Ams C

Utrecht

row group 1 row group 2

Supported formats and protocols

s3://http(s):// azure://

Postgre-
SQL

SQLite

MySQL

JSON

Parquet

CSV

Iceberg

Delta

Pandas integration

import duckdb
import pandas as pd

my_df = pd.DataFrame.from_dict({'a': [42, 43]})

r1 = duckdb.sql("SELECT avg(a) AS s FROM my_df")

┌────────┐
│ s │
│ double │
├────────┤
│ 42.5 │
└────────┘

my_df

zero-copy
access

r2 = r1.df()

s
0 42.5

replacement scan

IDEs for DuckDB

qStudioDBeaver

HarlequinTablePlus JupySQL / Google Colab

JupySQL / VS Code

State of DuckDB

Adoption

19k GitHub stars

~30k followers on
LinkedIn/Twitter

1M visits per month

4M+ PyPI installs/month

Index

2018-07-13: Initial commit
2024-06-03: v1.0.0 release

Stable storage: DuckDB's
file format is backwards-
compatible

DuckDB v1.0.0: Snow Duck

Extensions

• Powerful extension mechanism:
new types and functions
data formats
operators
SQL syntax
memory allocator
compression

• We are dogfooding – many key
features are DuckDB extensions:

httpfs
JSON
Parquet

Extensions

https://github.com/duckdb/extension-template

Extension ecosystem

Use cases

• Local data processing
• Avoid egress fees
• Replace proprietary systems: DuckDB is free
• Replace distributed systems: DuckDB is more efficient

Reducing costs

TPC-H experiments on Parquet files

Ti
m

e
Q

1
to

 Q
22

 (s
)

0

125

250

375

500

Cluster Size
2 4 8 16 32

76

TPC-H experiments on Parquet files

Ti
m

e
Q

1
to

 Q
22

 (s
)

0

125

250

375

500

Cluster size (#machines)
2 4 8 16 32

76

Last mile analytics

• E.g., 100TB log file processed by Spark to 50GB summary
• The lasts steps can be done interactively using DuckDB
• Build 120 FPS dashboards!

evidence Rill Data Streamlit

Local prototyping

• Experimenting with SQL queries
• In a local environment
• ...with quick response time
• ...for free
• Using a popular SQL dialect helps!

• A single data processing step in a larger system
• Parquet → CSV conversion, loading data, etc.
• Not a database use case!

Building block

https://github.com/ldbc/ldbc_graphalytics/pull/217
https://github.com/ldbc/ldbc_graphalytics/pull/217
https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165
https://github.com/ldbc/ldbc_snb_interactive_v1_driver/pull/165

Education

• Easy to install
• Open-source
• Uses de facto standards (PostgreSQL dialect, Parquet, ...)
• Does not need configuration
• Does not need a DBA to run it

Limitations

Concurrency control

• ACID compliance via multi-version concurrency control (MVCC)
• Recovery using a write-ahead log (WAL)
• But: Not a good fit for write-heavy workloads

my.db

RW

my.db

R

DuckDB only supports single-node execution

DuckDB can scale up:
• r6id.32xlarge: 1TB RAM, $10/h
• x1e.32xlarge: 4TB RAM, $28/h
• u7in-32tb.224xlarge, 36TB, $408/h :)

Allows scaling for TBs of data

Typical setup:
• Store the data in S3 or S3 Express One
• Run short bursts of workloads

No distributed execution

Client application

Business model $

DuckDB Labs

A company of ~15, based in Amsterdam

Operations funded by revenue (no VC)

Consulting and support for DuckDB

A non-profit organization

Owns the intellectual property of the project

• 12 silver supporters
• 3 gold supporters

DuckDB Foundation

Venture capital-funded, HQ in Seattle

Builds a cloud data warehouse using DuckDB

Reached General Availability yesterday!

MotherDuck

https://motherduck.com/

Summary ∑

Spectrum of data processing systems

data size

Open-source
MIT license

Portable

Built on open standards
Easy to avoid vendor lock-in

Works offline (PDF, ZIP)
No need to be permanently connected

No tracking, no cookies

DuckDB is an old-school analytical database for modern hardware

https://duckdb.org/duckdb-docs.pdf

duckdb.org

@duckdbdiscord.duckdb.org

Stay in touch

duckdb.org

Why DuckDB?

Wilbur

Hannes

