Liberate
Analytical Data Management

with DuckDB

Hannes Muhleisen
DuckDB Labs






Act 1: The Backstory



BRUNO

-
=X
L
[ -

MARS

RONSON

THE FORCE AWAKENS

UPIOWN FUNK!
TRINIDAD JAMES REMIX




ORACLE
teradatao @ Google DATABASE
Big Query . ft®§% w
VERTICA SQl Server
amazon
Greenp'um REDSHIFT
ENTERPRISE SPECIAL HADOOP-ISTAN CLOUD TODDLERS DINOSAUR ADD-ONS

2015 Analytics

N\7

% 1l pandas

¢ vectorwise

| = ]
,;l HyPer % d\y

GNUparallel
OBSCURE ACADEMIC SPIN-OFFS DESPAIR ENGINEERING







Can’t
pip import state_of_the_art

T have to build

this ourselves?

N\

100 people, 10 years
Many $$5

\

Pause

Spite Engineering







SQLite for Analytics!






Act 2: Design Decisions




Distributed?




Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Unaffiliated* Unaffiliated”

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.
We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often

50T 1000 |

>
s*"\e

100 ¢

seconds

system B

1 10 100 300 1 10 100 300
cores cores

Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “‘scales’ far better,
despite (or rather, because of) its poor performance.

2015!



System
Redshift
B Snowflake

p99.9 < 300 GB

_
-
T

0.15-

(-
uoloei4 Aianp



® Finder File Edit View Go Window Help D 3

Single Node!




JI'T

Vectorized










i Proprietary
[
f MIT






Fair Benchmarking Considered Difficult:
Common Pitfalls In Database Performance Testing

Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Miihleisen
Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands
[raasveld,holanda,tgubner,hannes]|@cwi.nl

ABSTRACT

Performance benchmarking is one of the most commonly used
methods for comparing different systems or algorithms, both in sci-
entific literature and in industrial publications. While performance
measurements might seem objective on the surface, there are many
different ways to influence benchmark results to favor one system
over the other, either by accident or on purpose. In this paper, we
perform a study of the common pitfalls in DBMS performance com-
parisons, and give advice on how they can be spotted and avoided
so a fair performance comparison between systems can be made.
We illustrate the common pitfalls with a series of mock benchmarks,
which show large differences in performance where none should
be present.

Slow -

Speed

T

Our System Their System

Figure 1: Generic benchmark results.

2018



RTABench

a Benchmark For Real Time Analytics Repo
System: [7;1; TimescaleDB ClickHouse Timescale Cloud MongoDB Duck Postgres ClickHouse Cloud (aws) MySQL
Database Type: All General Purpose Real-time Analytics Batch Analyti
Machine: [7,77] [ms.axlarge, 500gb gp2 | [ c6a.4xlarge, 500gb gp2 | | 4 vCPU 166B | [ 12 vCPU 48 GB (3x: 4vCPU 16GB) | | 16 VCPU 64GB

6 vCPU 24 GB (3x: 2vCPU 8GB) 8 vCPU 32GB 24 vCPU 96 GB (3x: 8vCPU 32GB)

Cluster size: NE) ] 3

Metric: ,01ld Run Hot Run Load [1me

System and Machine Relative time (lower is better)

TimescaleDB (cb6a.4xlarge, 500gb gp2).

TimescaleDB (m5.4xlarge, 500gb gp2)

x1.44

x1.79




RTABench

a Benchmark For Real Time Analytics Repo
System: All TimescaleDB ClickHouse Timescale Cloud MongoDB DuckDB Postgres ClickHouse Cloud (aws) MySQL
Database Type: All General Purpose Real-time Analytics Batch Analytics
Machine: [7,77] [ms.axlarge, 500gb gp2 | [ c6a.4xlarge, 500gb gp2 | | 4 vCPU 166B | [ 12 vCPU 48 GB (3x: 4vCPU 16GB) | | 16 VCPU 64GB

6 vCPU 24 GB (3x: 2vCPU 8GB) 8 vCPU 32GB 24 vCPU 96 GB (3x: 8vCPU 32GB)

Cluster size: [ 1711113

Metric: ,01ld Run Hot Run Load [1me

System and Machine Relative time (lower is better)

DuckDB (cb6a.4xlarge, 500gb gp2).

DuckDB (m5.4xlarge, 500gb gp2)

x1.15

x1.51



 DuckDB isn't built for real-time analytics, so it's excluded

~ from the main results, but it was the fastest n the

benchmark. Given its popularity, we included it in the

benchmark to serve as a point of reference, and it surprised us: It
was 3.5x faster than TimescaleDB and 7.3x faster than
ClickHouse.



25.0k

20.0k

15.0Kk

GitHub Stars

10.0k

9.0k

| ® duckdb/duckdb !

2019

2020

O>star History

202

2022
Date

2025

2024 2025
X} star—history.com



DUcKDB Labs






Act 3: Going Deep






Execution Time

s Minimal Memory Utilization
=== Fyll Memory Utilization
=== Memory Limit

Data size

Or crash A



Saving Private Hash Join

Laurens Kuiper, Paul Grof3, Peter Boncz, Hannes Miihleisen

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
{laurens.kuiper,paul.gross,peter.boncz,hannes.muehleisen}@cwi.nl

VLDB 202535!



MetaData 1 i Row Page 1 ) i Var Page 1

(Row Page: 1 e -
Row Offset: @
Var Page: 1

Var Offset: 0 - = -
Var Ptr: 0x042
Count: 5 — - -

MetaData 2 ---

(Row Page: 2 N _ -
Row Offset: O =

Var Page: 1
Var Offset: 42
Var Ptr: 0x042 (" A 4

Count: 1 Row Page 2 P Var Page 2

Z

\.

MetaData 3

(Row Page: 2
Row Offset: 1
Var Page: 2
Var Offset: 0
Var Ptr: 0x210
Count: 4 )

MetaData 4

Eow g?%e 3 . \\\\\\\\\\\
ow set: 4
Var Page: 2 Row Page 3

Var Offset: 31
Var Ptr: 0x210

.

Count: 2 y
MetaData 5
(Row Page: 3

Row Offset: 2
Var Page: 3

Var Offset: 0
Var Ptr: 0x840
Count: 3 y

\.




/

Morsel Bi'

Morsel Bz

®

Morsel Bn

\-




4 Buildir
Thread 1

. . .1
Morsel Bi - '
"" -
\

J
Morsel Bz

Thread 2

Partition &

"" Materialize (L _J L _J|
S - I J

Morsel Bn )

p \
Haptiz;  (Thread T
NEele

\ 7/ |

%

\o




42 Building A

- A "Partitions)
Thread 1 :
R C,Radlx 1_:
.+ 0V
fMorse'[ B va(sg:;a\-\- . Pages
""V Exchange

(_Radix 2 O
a ) adix
RE 52 . ~_Pages °

Partition &
Materialize (| ‘
——»
| (Exchange }
\ ) V'

Morsel Bn )

Py,
Cir.

M
\ 7/

\-

_Radix R 1
" Pages




4 Probing )

" Initial Probe (Morsel P.) (Morsel P, ‘Morsel Py’

'Hash Table)
e
N\ 0x084 , v ) & v ), A v ),

-

-

TN
N\0x168

\\ J

(Select) [Select) (Select)
A | Ny (N

I

Join

Output]




AL D)
' ) /'
o I
,

{ ¢ L e Mo W /
NN = N
viX % 9]

‘)

(Repeat Until Done )

4 Probing N
" Initial Probe (Morsel P.) (Morsel P, ‘Morsel Py A
rHas Table!

N\ 0x084 \ )) \§ J \ v J

-

- (Select) [Select) (Select)

N
N A - N o
> ( Overflow )Z( Ove rﬂow ( Ove rﬂow] .
”Subsequent Probes * * + +

Hash Tabl e )

| o Thread 1|(Thread 2| ~ [Thread T
IR EE SRR

N\ 0%2!

Jox

Output]




Morsel Bi)

-

Morsel B>}

‘Morsel Bu)

e .’ZO C
’161}:<S
e

Partition &
Materialize

Building " \\
( i Partitions
Thread 1 M Radx T

(Exchange

(]

tTh read 2j

Pa

Exchange

Thread 'ﬁ

Exchange

{

Pages

lInsertl
e

Insert

4 Probing h
c Initial Probe (Morsel P.) (Morsel P>) Morsel Py A
o "" "" |'||
0x084 & 7) 8 7, \ J)
Select Select Select
0x168 Join
S / r N r N Y,
- Overflow ):( Overflow | | Overflow | \
Subsequent Probes + + *
Hash Table)
[Thread 1] [Thread .2] [Thread.T]
(Repeat Until Done)
¥,

OutputJ




Execution Time [s]

1000

800
600
400

N
-
-

0

1000

800
600
400
200

0

Inner Cardinality

A A

A T

i0oM 200M 300M 400M 500M

Outer Cardinality

A A A ATTTTT

A A

A A A

-.—.

DuckDB
PostgreSQL
HyPer
Umbra

Rows

200M 400M 600M 800M 1000M







Going Back Up






Building a SQL-Powered Doom Clone in the Browser

BRHARFARTHBIFARTH

RUFHRB ARV FHARTAFH

https://www.hey.earth/posts/duckdb-doom



SF 1 000 SF 10 000 SF 100 000

Raspberry Pi MacBook Pro EC2 i7ie.48xlarge
16 GB RAM 128 GB RAM 1.5 TB RAM



@duckdb.org
@hannes.muehleisen.org




