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Act 1: The Backstory
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Act 2: Design Decisions
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Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Unaffiliated* Unaffiliated”

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.
We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often
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Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation “‘scales’ far better,
despite (or rather, because of) its poor performance.
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Fair Benchmarking Considered Difficult:
Common Pitfalls In Database Performance Testing

Mark Raasveldt, Pedro Holanda, Tim Gubner & Hannes Miihleisen
Centrum Wiskunde & Informatica (CWI)
Amsterdam, The Netherlands
[raasveld,holanda,tgubner,hannes]|@cwi.nl

ABSTRACT

Performance benchmarking is one of the most commonly used
methods for comparing different systems or algorithms, both in sci-
entific literature and in industrial publications. While performance
measurements might seem objective on the surface, there are many
different ways to influence benchmark results to favor one system
over the other, either by accident or on purpose. In this paper, we
perform a study of the common pitfalls in DBMS performance com-
parisons, and give advice on how they can be spotted and avoided
so a fair performance comparison between systems can be made.
We illustrate the common pitfalls with a series of mock benchmarks,
which show large differences in performance where none should
be present.
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Figure 1: Generic benchmark results.
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RTABench

a Benchmark For Real Time Analytics Repo
System: [7;1; TimescaleDB ClickHouse Timescale Cloud MongoDB Duck Postgres ClickHouse Cloud (aws) MySQL
Database Type: All General Purpose Real-time Analytics Batch Analyti
Machine: [7,77] [ms.axlarge, 500gb gp2 | [ c6a.4xlarge, 500gb gp2 | | 4 vCPU 166B | [ 12 vCPU 48 GB (3x: 4vCPU 16GB) | | 16 VCPU 64GB

6 vCPU 24 GB (3x: 2vCPU 8GB) 8 vCPU 32GB 24 vCPU 96 GB (3x: 8vCPU 32GB)

Cluster size: NE) ] 3

Metric: ,01ld Run Hot Run Load [1me

System and Machine Relative time (lower is better)

TimescaleDB (cb6a.4xlarge, 500gb gp2).

TimescaleDB (m5.4xlarge, 500gb gp2)

x1.44

x1.79




RTABench

a Benchmark For Real Time Analytics Repo
System: All TimescaleDB ClickHouse Timescale Cloud MongoDB DuckDB Postgres ClickHouse Cloud (aws) MySQL
Database Type: All General Purpose Real-time Analytics Batch Analytics
Machine: [7,77] [ms.axlarge, 500gb gp2 | [ c6a.4xlarge, 500gb gp2 | | 4 vCPU 166B | [ 12 vCPU 48 GB (3x: 4vCPU 16GB) | | 16 VCPU 64GB

6 vCPU 24 GB (3x: 2vCPU 8GB) 8 vCPU 32GB 24 vCPU 96 GB (3x: 8vCPU 32GB)

Cluster size: [ 1711113

Metric: ,01ld Run Hot Run Load [1me

System and Machine Relative time (lower is better)

DuckDB (cb6a.4xlarge, 500gb gp2).

DuckDB (m5.4xlarge, 500gb gp2)

x1.15

x1.51



 DuckDB isn't built for real-time analytics, so it's excluded

~ from the main results, but it was the fastest n the

benchmark. Given its popularity, we included it in the

benchmark to serve as a point of reference, and it surprised us: It
was 3.5x faster than TimescaleDB and 7.3x faster than
ClickHouse.
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Act 3: Going Deep
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Saving Private Hash Join

Laurens Kuiper, Paul Grof3, Peter Boncz, Hannes Miihleisen

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
{laurens.kuiper,paul.gross,peter.boncz,hannes.muehleisen}@cwi.nl
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Going Back Up






Building a SQL-Powered Doom Clone in the Browser
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https://www.hey.earth/posts/duckdb-doom



SF 1 000 SF 10 000 SF 100 000

Raspberry Pi MacBook Pro EC2 i7ie.48xlarge
16 GB RAM 128 GB RAM 1.5 TB RAM
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