

DuckDB Meetup on Science and Education September 2025

Hands-on:
a PhD Centered Around
DuckDB

Laurens Kuiper (ex-CWI, now at DuckDB Labs Amsterdam) DuckDB

Hands-on: a PhD Centered Around DuckDB

Overview

1. About Me

2. DuckDB: a Real (Research) System
3. The Story of Sorting in DuckDB

4. Conclusion

1. About Me

o

1. About Me

Computer Science Career

e 2014 - 2017: CS Bachelor in Nijmegen (some SQL)

e 2017 -2020: Data Science Master in Nijmegen (no DB stuff)

o 2020 -2024: PhD at CWI in Amsterdam (only DB stuff)

e 2021 - Now: Software Developer at DuckDB Labs Amsterdam

1. About Me

DuckDB Contributions

o Core:
e Larger-than-memory query processing:
e Sorting
e Hash Aggregation
¢ Hash Join
¢ Memory management

e EXxtensions:
o fis
e |SON

2. DuckDB: a Real (Research) System

o

2. DuckDB: a Real (Research) System

Database Systems Research

e During my time in university, |:
e Worked with existing code X
e Started with a clean slate

e |ots of database systems research is done in the same way

e Advantage: unrestricted innovation %
e Not constrained by design choices made prior

e Disadvantage: unrestricted innovation <
e Not constrained by what is realistic in a system

2. DuckDB: a Real (Research) System

Which System? Q

e If you're aresearcherin 2015 who wants to work with existing
code, where do you start?

e Only a select few universities have a good in-house system
e Open-source options are all but modern:

e OLAP: MonetDB

e OLTP: PostgreSQL

e Since 2019:;
e OLAP: DuckDB
o OLTP:; 7?77

3. The Story of Sorting in DuckDB

o

3. The Story of Sorting in DuckDB

Humble Beginnings

e |Implementation #1:

e \Very inefficient comparisons (bad cache locality, lots of
branches)

¢ Single-threaded
¢ |[n-memory only
e Used this data structure:

v 190 mEEmE src/common/types/chunk_collection.cpp [Viewed [J -~

Load diff
This file was deleted.

3. The Story of Sorting in DuckDB

Second Chance

e Implementation #2 (ICDE '23):
e Efficient comparisons (good cache locality, few branches)
o Fully parallel
¢ Handles larger-than-memory data

These Rows Are Made for Sorting
and That’s Just What We’ll Do

Laurens Kuiper Hannes Miihleisen
CWI, Amsterdam, Netherlands CWI, Amsterdam, Netherlands
laurens.kuiper @cwi.nl hannes.muehleisen@ cwi.nl

e Many problems with larger-than-memory sorting
e Horrible API

3. The Story of Sorting in DuckDB

Second Chance Q

e Why didn’t we find these problems earlier?
e Implemented with one research objective in mind: performance

e How did these problems get found?
e My code was being used after the research was done

e Problems with larger-than-memory sorting were found by users

e API problems encountered by Richard:
¢ When integrating the sort into Window Operator and Range Joins

3. The Story of Sorting in DuckDB

Third Time’s the Charm

e Implementation #3:
o [akes lessons from research and practical experience
e Claims to tackle all of the downsides of implementation #2

New Sorting Implementation #1/584

fe (VCIGEL I Mytherin merged 77 commits into duckdb:main from lnkuiper:sorting @ on May 28

Q) Conversation 3 -0- Commits 77 [F) Checks 52 Files changed 61

O Inkuiper commented on May 21 Member

This PR proudly presents a full rewrite of DuckDB's sorting code. It is currently integrated into the ORDER BY operator, and
should be integrated into other operators over a series of PRs, such that the current sort code can be removed from the
code base at some point.

Current Implementation

DuckDB's current sorting implementation was written a few years ago by an inexperienced 1st year PhD student (me).

New Implementation

The new sorting code is written by a much more experienced software developer (me again).
It tackles all of the downsides of the current implementation:

3. The Story of Sorting in DuckDB

Third Time’s the Charm

e Implementation #3:
e |Improved parallel scaling
e Less /O for larger-than-memory processing
e Highly adaptive to pre-sorted data
¢ |Nn summary: better performance

e Same API as DuckDB'’s query operators:
e Sink - Combine - Finalize - GetData
e Easier integration in other operators (already in Window!)

3. The Story of Sorting in DuckDB

Third Time’s the Charm

e Implementation #3:
e Improved parallel scaling
e Less |/0 for larger-than-memory processing

e Highly adaptive to pre-sorted data
¢ |n summary: better performance

e Same API as DuckDB’s query operators:
e Sink » Combine - Finalize - GetData
e Easier integration in other operators (already in Window!)

3. The Story of Sorting in DuckDB

Third Time’s the Charm

¢ Novel merge sort implementation:
e Streaming

o K-way 17 0
e Parallel B _~
o External 73| —

86
90
95
99 | 1

e Merge Path by Oded Green et al.
e Precompute where sorted runs intersect (boundaries)
e Merge ranges between boundaries independently, in parallel
e Generalized to K sorted runs in DuckDB v1.4.0

3. The Story of Sorting in DuckDB

Third Time’s the Charm

¢ M1 Max (10 threads, 30 GB memory limit)

SELECT
FROM lineitem

ORDER BY L _shipdate;

e vV1.4.0 Performance preview:

SF v1.3.2 [s] v1.4.0[s] | Speedup [Xx]
1 0.328 0.189 1,735
10 3,353 1,520 2,205
100 273,982 80,919 3,385

4. Conclusion

o

4. Conclusion

Summary

e Database systems research:
e Has more credibility when implemented in a real system
e Can now use a modern open-source OLAP system: DuckDB

e Becomes better the more it is used in practice:
e Maintaining DuckDB'’s sort implementation made it more robust
e Usage identified pain points that were missed in the paper

e Combination of research and implementation in a real system
produced a better sorting implementation than either could have
produced alone

