

Hands-on:
a PhD Centered Around
DuckDB

Laurens Kuiper (ex-CWI, now at DuckDB Labs Amsterdam)

September 2025DuckDB Meetup on Science and Education

hash join

1. About Me
2. DuckDB: a Real (Research) System
3. The Story of Sorting in DuckDB
4. Conclusion

Overview
Hands-on: a PhD Centered Around DuckDB

1. About Me

• 2014 – 2017: CS Bachelor in Nijmegen (some SQL)
• 2017 – 2020: Data Science Master in Nijmegen (no DB stuff)
• 2020 – 2024: PhD at CWI in Amsterdam (only DB stuff)
• 2021 – Now: Software Developer at DuckDB Labs Amsterdam

Computer Science Career
1. About Me

• Core:
• Larger-than-memory query processing:

• Sorting
• Hash Aggregation
• Hash Join
• Memory management

• Extensions:
• fts
• json

DuckDB Contributions
1. About Me

2. DuckDB: a Real (Research) System

• During my time in university, I:
• Worked with existing code ❌
• Started with a clean slate ✅

• Lots of database systems research is done in the same way

• Advantage: unrestricted innovation 🚀
• Not constrained by design choices made prior

• Disadvantage: unrestricted innovation 💥
• Not constrained by what is realistic in a system

Database Systems Research
2. DuckDB: a Real (Research) System

• If you’re a researcher in 2015 who wants to work with existing
code, where do you start?
• Only a select few universities have a good in-house system
• Open-source options are all but modern:

• OLAP: MonetDB
• OLTP: PostgreSQL

• Since 2019:
• OLAP: DuckDB
• OLTP: ???

Which System?
2. DuckDB: a Real (Research) System

3. The Story of Sorting in DuckDB

• Implementation #1:
• Very inefficient comparisons (bad cache locality, lots of

branches)
• Single-threaded
• In-memory only
• Used this data structure:

• But it was easy to use, and it worked!

Humble Beginnings
3. The Story of Sorting in DuckDB

• Implementation #2 (ICDE ’23):
• Efficient comparisons (good cache locality, few branches)
• Fully parallel
• Handles larger-than-memory data

• Many problems with larger-than-memory sorting
• Horrible API

Second Chance
3. The Story of Sorting in DuckDB

• Why didn’t we find these problems earlier?
• Implemented with one research objective in mind: performance

• How did these problems get found?
• My code was being used after the research was done

• Problems with larger-than-memory sorting were found by users

• API problems encountered by Richard:
• When integrating the sort into Window Operator and Range Joins

Second Chance
3. The Story of Sorting in DuckDB

• Implementation #3:
• Takes lessons from research and practical experience
• Claims to tackle all of the downsides of implementation #2

Third Time’s the Charm
3. The Story of Sorting in DuckDB

…

…

• Implementation #3:
• Improved parallel scaling
• Less I/O for larger-than-memory processing
• Highly adaptive to pre-sorted data
• In summary: better performance

• Same API as DuckDB’s query operators:
• Sink → Combine → Finalize → GetData
• Easier integration in other operators (already in Window!)

Third Time’s the Charm
3. The Story of Sorting in DuckDB

• Implementation #3:
• Improved parallel scaling
• Less I/O for larger-than-memory processing
• Highly adaptive to pre-sorted data
• In summary: better performance

• Same API as DuckDB’s query operators:
• Sink → Combine → Finalize → GetData
• Easier integration in other operators (already in Window!)

Third Time’s the Charm
3. The Story of Sorting in DuckDB

• Novel merge sort implementation:
• Streaming
• K-way
• Parallel
• External

• Merge Path by Oded Green et al.
• Precompute where sorted runs intersect (boundaries)
• Merge ranges between boundaries independently, in parallel
• Generalized to K sorted runs in DuckDB v1.4.0

Third Time’s the Charm
3. The Story of Sorting in DuckDB

• M1 Max (10 threads, 30 GB memory limit)

SELECT *
FROM lineitem
ORDER BY l_shipdate;

• v1.4.0 Performance preview:

Third Time’s the Charm
3. The Story of Sorting in DuckDB

SF v1.3.2 [s] v1.4.0 [s] Speedup [x]

1 0.328 0.189 1,735

10 3,353 1,520 2,205

100 273,982 80,919 3,385

4. Conclusion

• Database systems research:
• Has more credibility when implemented in a real system
• Can now use a modern open-source OLAP system: DuckDB

• Becomes better the more it is used in practice:
• Maintaining DuckDB’s sort implementation made it more robust
• Usage identified pain points that were missed in the paper

• Combination of research and implementation in a real system
produced a better sorting implementation than either could have
produced alone

Summary
4. Conclusion

