

DuckDB in Science Meetup 2025 (London)

Elevating Bitmap Indexing in OLAP DBMSs

CUBIT, RABIT, and ...

Junchang (Jason) Wang and Manos Athanassoulis

Bitmap Index Basics

Specialized indexing

- Query result is readily available
- Compact representation of selective query result

Bitvectors

- Os are highly compressible
- Efficient bitwise operations (e.g., OR/AND)
- Sequential access minimizes cache and TLB misses

Bitmap Indexing Limitations

M Updating encoded bitvectors is **very** inefficient

CUBIT's Goal

Update-friendly Bitmap Indexes on Multicore Systems

- Queries are wait-free with guaranteed completion
- Updates are lock-free and avoid blocking each other

Concurrent Updatable BITmap Indexing (CUBIT)

Out-of-place update mitigates synchronization complexity

Multi-versioning enables parallel execution of queries and updates

Bitvector Segmentation exploits parallelism on multicore systems

CUBIT

Goals

Experiments

Out-of-place update

Mitigate synchronization

Synthetic data

n: # tuples

d: # domain values (cardinality)

q: # queries

u: % updates in the workload

Multi-versioning

Parallel queries and updates

Prototype C++ implementation of

CUBIT, UpBit, UCB, and In-place using

FastBit

Bitvector Segmentation

Parallelism on multicores

Integrated into a row-store prototype system (DBx1000) and a column-store system (DuckDB)

Integrating CUBIT into DuckDB

- TPC-H SF 10 dataset
- DuckDB version 1.0
- Single-core execution to focus on executor logic

Maintain CUBIT instances for table attributes under updates

- l_quantity (cardinality = 50)
- I_shipdate (cardinality = 2,526)
- I_orderkey (cardinality = 15M)
- ...

Implement CUBIT-based Scan, Aggregation, and Join executors

See our paper for details

DuckDB makes it easy to integrate and experiment with CUBIT CUBIT accelerates not only Scan, but also Aggregation and Join

To be continued ...

Equality Encoding (EE)

Range Encoding (RE)

CUBIT mainly focuses on point queries, meaning

- it mainly adopts equality encoding scheme
- each query reads only one bitvector

However,

to support range queries (e.g., "A <= 8"),

- Extend updatability to encoding schemes beyond equality encoding
- Support high-cardinality attributes

RABIT: Efficient Range Queries with Bitmap Indexing (SIGMOD'26)

CUBIT is Update-Friendly for Multicore Processors

DuckDB enables rapid integration and test with CUBIT!

Out-of-place update

Multi-versioning

Bitvector Segmentation

https://disc.bu.edu

We are pushing bitmap toward general secondary indexes

Please contact if you are interested

Thank you!