
Elevating Bitmap Indexing in OLAP
DBMSs

CUBIT, RABIT, and …

Junchang (Jason) Wang and Manos Athanassoulis

DuckDB in Science Meetup 2025 (London)

A=30A=20A=10

Bitmap Index Basics

2

30

20

30

10

20

10

30

20

0

0

0

1

0

1

0

0

0

1

0

0

1

0

0

1

1

0

1

0

0

0

1

0

Column A

Specialized indexing

Compact representation of selective query result

Query result is readily available

Bitvectors

Sequential access minimizes cache and TLB misses

Efficient bitwise operations (e.g., OR/AND)

0s are highly compressible

Bitmap Indexing Limitations

3

30

20

30

10

20

10

30

20

Column A
Addressed by bitvector encoding/compression

Updating encoded bitvectors is very inefficient

Index Size
 A=20 A=30A=10

0

0

0

1

0

1

0

0

0

1

0

0

1

0

0

1

1

0

1

0

0

0

1

0

core idea: run-length encoding (RLE) to compactly store

but …encoded bitvectors

long runs of 1s or 0s

CUBIT’s Goal

Update-friendly Bitmap Indexes on Multicore Systems

o Queries are wait-free with guaranteed completion

o Updates are lock-free and avoid blocking each other

4

Concurrent Updatable BITmap Indexing
(CUBIT)

 Out-of-place update mitigates synchronization complexity

 Multi-versioning enables parallel execution of queries and updates

 Bitvector Segmentation exploits parallelism on multicore systems

5

Out-of-place update

Multi-versioning

Bitvector Segmentation

6

CUBIT Goals

Synthetic data
n: # tuples
d: # domain values (cardinality)
q: # queries
u: % updates in the workload

Prototype C++ implementation of
CUBIT, UpBit, UCB, and In-place using
FastBit

Integrated into a row-store prototype
system (DBx1000) and a column-
store system (DuckDB)

Experiments

Mitigate synchronization

Parallel queries and updates

Parallelism on multicores

Integrating CUBIT into DuckDB
Maintain CUBIT instances for table attributes under updates
• l_quantity (cardinality = 50)

• l_shipdate (cardinality = 2,526)

• l_orderkey (cardinality = 15M)

• …

Implement CUBIT-based Scan, Aggregation, and Join executors
• See our paper for details

7

DuckDB makes it easy to integrate and experiment with CUBIT

• TPC-H SF 10 dataset
• DuckDB version 1.0
• Single-core execution to

focus on executor logic

CUBIT accelerates not only Scan, but also Aggregation and Join

To be continued ...

8RABIT: Efficient Range Queries with Bitmap Indexing (SIGMOD’26)

CUBIT mainly focuses on point queries, meaning
o it mainly adopts equality encoding scheme
o each query reads only one bitvector

 However,

to support range queries (e.g., "A <= 8"),
o Extend updatability to encoding schemes

beyond equality encoding
o Support high-cardinality attributes

CUBIT is Update-Friendly for Multicore Processors

9

Thanks!

https://disc.bu.edu

DuckDB enables rapid integration and test with CUBIT !

Out-of-place update

Multi-versioning

Bitvector Segmentation

We are pushing bitmap toward general secondary indexes
Please contact if you are interested

Thank you!

