GizmoEdge

A Distributed SQL Engine for loT and Edge

*g

GizmoEdge

Distributed SQL Englne AnalytICS
Philip Moore
GizmoData

DuckDB Developer Meeting #1
January 30, 2026 + Pakhuis de Zwijger, Amsterdam

About Me

Philip Moore

Founder, GizmoData

Data Enthusiast and builder

* Worked with Oracle technology for 15 years

 Expanded to open-source data technologies about
10 years ago

* | love the COUNT DISTINCT problem!

* Worked for P&G, HP, Dunnhumby, Kroger, Voltron
Data, and now GizmoData ©

Background
* Married to Scharlene — 3 kids, 3 dogs, 2 cats
* Former U.S. Marine

Awards
e Marine of the Year (2000) — HQ Battalion 4t MarDiv
* QOracle DBA of the Year — North America 2016

DuckDB Contributions

+ struct_insert() function

PR #3853 — new scalar function for structs

+ BIT_COUNT HUGEINT support

PR #4440 — extended to 128-bit integers

« information_schema views

PR #12942 — referential constraint views

+ httpfs: S3 Requester Pays mode

PRs #85, #99 — feature + bugfix for session tokens

 Documentation contributions

duckdb-web PRs #296, #303, #403, #5581

+ Issues & feature requests

Bitmap aggregation (#3943), hash distribution
(#4417), hive partitioning (#12921), support for
encryption of DuckDB database file (password
protected) (#4512)

2/17

The Challenge: Data at the Edge

Volume Cost Latency

loT sensors, mobile Cloud egress, storage, and Real-time decisions can’t

devices, and edge nodes compute costs wait for

generate massive data scale linearly. Centralizing round-trips to the cloud.

volumes —faster than everything Analytics must

they can be centralized. is economically happen where the data
unsustainable. lives.

3/17

What is GizmoEdge?

A distributed OLAP engine that uses DuckDB as its execution engine —coordinating parallel
query execution across heterogeneous workers, from cloud Kubernetes clusters to laptops,

Linux boxes, and iOS devices.

I “ Divide & Conquer I @ DuckDB-Powered
Shards data across workers. Each worker runs DuckDB locally.
Aggregation queries run in parallel; Full SQL support, vectorized execution,
results are combined on the server. zero external dependencies.

I @ Heterogeneous Workers I & Arrow + WebSockets
Cloud (K8s on AWS/Azure/GCP), Apache Arrow IPC for columnar
bare-metal Linux, macOS laptops, serialization. WebSocket/TLS for
and iOS devices—all as workers. secure, async communication.

4/17

Architecture Overview

I Server (Coordinator)

+ Parses SQL with PostgreSQL parser (pglast)
+ Detects aggregate functions (SUM, AVG, COUNT, MIN, MAX)

+ Distributes query to workers with assigned shards

+ Aggregates partial results into final answer

Gizmo Edge
macOS Worker

I Workers
* Download shard via pre-signed S3/Azure URL

SQL Client

Gizmo Edge

i otk + Execute query locally with DuckDB (read-only)
aws *+ Return results as Arrow IPC over WebSocket
kubernetesZ?:f::cmd « Can run on any platform: K8s, Linux, macQOS, iOS

Gizmo Edge
Cloud Worker

. I Client
‘ Linux
- * Interactive SQL REPL or web-based SQL Navigator
10T o + Supports .set distributed / .set summarize toggles
—,
Gizmo Ecge - Receives Arrow-serialized results from server

5/17

WebSocket Protocol: Message Flow

All communication uses async WebSockets (with optional TLS/mTLS). Messages are JSON with a MessageKind discriminator.

AUTHENTICATE

Registration
DEVICE UUID

REGISTER (hw, cpu, mem)

n SHARD REQUEST
Shard Setup
SHARD DATASET _(pre—signed URL) A
1 download + verify
n SHARD CONFIRMATION (MD5) SHA-256
EXECUTE QUERY _ (SQL) A
Query
L parse -
distributed query QUERY (distributed SQL) A
n QUERY PROGRESS
N RESULT _ (Arrow IPC baseb64)
Results
! concat +
N QUERY COMPLETED _(Arrow IPC) summary_query

6/17

How GizmoEdge Uses DuckDB

On Every Worker Server-Side Aggregation

Worker opens shard as read-only DuckDB # Combine worker results with in-memory DuckDB

con = duckdb.connect(database=shard_file,
read_only=True)
con.execute(f"PRAGMA threads={cpu_count}")

combined = pyarrow.concat_tables(worker_tables)

con = duckdb.connect(database="':memory:")
con.execute(f"PRAGMA memory_limit='{mem}b'")

con.execute(f"PRAGMA threads={threads}")
Execute distributed query, return Arrow # Run summary query on combined results
result = con.execute(query).fetch_record_batch()
arrow_bytes = get_dataframe_ipc_bytes(result)

final = con.execute(summary_query)
.fetch_record_batch()

Key Design Decisions

« DuckDB's embedded nature = zero deployment friction on edge devices (no server process needed)
+ read_only=True on workers — safe concurrent access to shard files

« Container-aware: auto-detects CPU/memory from cgroups for Kubernetes pods

« TPC-H dbgen() built in — used for benchmarking and integration tests

7/17

Query Distribution: Divide & Conquer

The PostgreSQL parser (pglast) analyzes the AST to determine if a query contains aggregates. If so, the

query is distributed to workers and results are combined.

1. Client Query (TPC-H Q1) 2. Distributed Query (sent to workers)

SELECT 1_returnflag, 1_linestatus, SELECT 1_returnflag, 1_linestatus,
sum(1_quantity) AS sum_qty, sum(1l_quantity) AS sum_qty,
avg(1l_quantity) AS avg_qty, SUM(1_quantity) AS _avg_sum_avg_qty,
avg(1l_extendedprice) AS avg_price, COUNT(1_quantity) AS _avg_count_avg_qty,

count (x) AS count_order SUM(1_extendedprice) AS _avg_sum_avg_price,
FROM lineitem COUNT(l_extendedprice) AS _avg_count_avg_price,
WHERE 1_shipdate <= '1998-09-02' count(x) AS count_order
GROUP BY 1_returnflag, l_linestatus; FROM lineitem WHERE ... GROUP BY ...;

€3 Results from N workers
combined via

pyarrow.concat_tables()
3. Summary Query (server-side aggregation)

SELECT 1_returnflag, 1_linestatus,
SUM(sum_qty) sum_qty,
SUM(_avg_sum_avg_qty) / SUM(_avg_count_avg_qty) avg_qty,

SUM(_avg_sum_avg_price) / SUM(_avg_count_avg_price) avg_price,
SUM(count_order) count_order

FROM combined_result GROUP BY 1_returnflag, 1_linestatus;
8/17

The AVG Problem in Distributed Queries

You can’t average the averages. AVG is not a distributive aggregate—it must be

decomposed.

X Naive: AVG of AVGs (Wrong) V' GizmoEdge: SUM/COUNT
Decomposition

Worker 1: SUM=50, COUNT=5
Worker 2: SUM=1900, COUNT=95

Worker 1: AVG(qty) = 10 (5 rows)

Worker 2: AVG(qty) = 20 (95 rows)
Naive: AVG(10, 20) = 15 x WRONG

Server: SUM(50+1900) / SUM(5+95)
= 1950 / 100 = 19.5 v

Correct answer: (5x10 + 95x20) / 100 = 19.5

. : AVG(x) — SUM(x) + COUNT(x) on workers
The naive approach ignores row counts

Server computes: 2SUM / 2COUNT
Mathematically correct regardless of shard sizes.

and over-weights small shards.

9/17

Shard Management & Data Flow

Bootstrap Compress & Store Manifest Worker Download

DuckDB dbgen() generates Each shard exported to YAML manifest tracks Server sends pre-signed

TPC-H Parquet, shard ID, URL

data as Parquet, then compressed with name, SHA-256 hash, MD5 (5 min expiry). Worker

shards into Zstandard (.tar.zst), hash, downloads,

N "databases” uploaded to S3 or Azure and file size verifies SHA-256, reports
Blob MD5

Export shard to Parquet # Worker downloads via pre-signed URL

db.execute("""EXPORT DATABASE '{dir}' (shard_file = await copy_database_file(
FORMAT PARQUET, COMPRESSION zstd, source_path=presigned_urTl,
ROW_GROUP_SIZE 100000)""") target_path=1local_data_dir)

Compress with Zstandard # Integrity: SHA-256 verify + MD5 proof-of-work
cctx = zstandard.ZstdCompressor(level=3) sha256_hash = hashlib.sha256(data).hexdigest()
with zstandard.open(path, "wb", cctx=cctx) as f: assert sha256_hash == server_hash # verify
with tarfile.open(fileobj=f, mode="w") as tar: md5_hash = hashlib.md5(data).hexdigest()
tar.add(database_directory) # send md5 back to server as proof

Shard Creation (Zstandard compression) Worker Shard Verification 10/17

Targeted Broadcast Sharding

Each worker receives a micro data warehouse — a complete star schema with a fraction of the

facts and only the dimension rows needed to satisfy joins.

How It Works vV Why This Matters
I (D Hash-Partition Facts

Fact table (e.g. lineitem) is split into N shards

+ Workers handle full star-schema joins locally

_ o + No coordinator-side join work required
using hash partitioning — each shard gets

an even fraction of rOWs. + Dimension data is minimized per shard — less 1/0

I @ Filter Dimensions to Match * Each shard is a self-contained analytical unit

For each shard, only include dimension rows

(6.9. customer, supplier, part) that are 7 Future: Bloom Filter Optimization

referenced by that shard’s fact rows.

I (3 Worker Gets a Star Schema Instead of exact FK lookups during shard creation,
Each Worker receives a Se|f-contained use a b|00m f||ter on dimenSion keyS TradeS a Sma”
micro data warehouse. Inner joins between number of false positives (extra dimension rows) for

facts and dimensions run entirely on the worker. substantially faster shard build times.

11/17

Technology Stack for Preview

Category Technology Role
SQL Engine DuckDB 1.4.4 Embedded OLAP engine on every node
Query Parsing pglast 7.11 PostgreSQL parser for AST analysis

Serialization
Compression
Networking
Cloud Storage
Auth
Deployment
Language

Mobile

Apache Arrow IPC
Zstandard

websockets + TLS/mTLS
S3, Azure Blob

Basic + OAuth2 (Clerk)
Docker + Helm/K8s
Python 3.13+ / asyncio

APNS (1i0S)

Zero-copy columnar data exchange
Shard storage compression (level 3)
Async WebSocket with mutual TLS
Pre-signed URLs for shard download
SHA-256 passwords, JWT/JWKS tokens
Multi-arch (amd64/arm64) images
Async server with process pool workers
Push queries to offline mobile workers

12/17

Deployment: Cloud to Edge

Kubernetes (Production) Edge / Local
« Helm charts for server, workers, client, and web Ul * pip install gizmo-edge — runs anywhere Python runs
- Server: 48 CPU cores, 384 GB RAM « Docker multi-arch images (amd64 + arm64)
« Workers: 3.8 CPU / 30 GB RAM each, NVMe storage « Bootstrap command: one-line setup with TPC-H data
« Tested at TPC-H SF100 to SF10,000 « iOS workers via APNS push notifications
« Multi-cloud: AWS EKS, Azure AKS, GCP GKE « macOS / Linux / Windows workers
+ Coiled integration for elastic scaling - Zero-config DuckDB: auto-tunes threads & memory

One-Command Bootstrap for local development

Bootstrap: creates TLS certs, users, TPC-H data, and 11 shards
$ gizmo-edge-bootstrap ——client-username=scott ——client—password=tiger \
—worker—-password=united ——tpch-scale-factor=1 —-shard-count=11

Start server, workers, and client
$ gizmo-edge-server &

$ for x in {1..11}; do gizmo-edge-worker —--tls-roots=tls/server.crt ——password=united & done
$ gizmo-edge-client —-tls-roots=tls/server.crt ——username=scott —--password=tiger

13/17

Why DuckDB is the Perfect Fit

Embedded, Zero Dependencies

No server process to manage. A single file is the database. Workers open DuckDB databases as read-only—no
coordination overhead, no shared state.

Runs Everywhere
From 384 GB Kubernetes pods to a Raspberry Pi. DuckDB auto-tunes to available CPU and memory. GizmoEdge

reads cgroup limits for containers.

Built-in TPC-H Generator

DuckDB’s dbgen() function generates benchmark data natively. GizmoEdge uses this for bootstrapping test
environments and integration tests.
Arrow-Native

DuckDB’s fetch_record_batch() returns Arrow record batches directly—no conversion step. This is the data format

that flows over the wire.

Rich SQL Support

Full SQL with window functions, CTEs, complex expressions. The PostgreSQL parser ensures GizmoEdge

1indarctande tha eame QN
INANYL WJLUAL TN A NICAL T INY W\

A1 W LWl I\

14 /17

Live Demo

Distributed TPC-H Query Execution

Azure AKS cluster — 1,000 workers — 4,000 CPUs
Start server + multiple workers

Run TPC-H Queries with aggregates, joins, and filters
Show distributed vs. non-distributed execution

Toggle .set summarize = false to see raw worker results

What’s Next
@

Smarter Query Planning

Cost-based decisions on distribute vs. server-side execution. Support for more complex aggregation
patterns (HAVING, nested aggregates, windowing functions, etc).
Dynamic Worker Discovery

Workers self-register and auto-scale. Shard re-balancing when workers join or leave the cluster.

DuckDB Extension Integration

Leverage DuckDB extensions (spatial, ICU, httpfs) on workers. Extension-aware shard distribution.

Expression-Level AVG Support

Handle AVG over expressions like AVG(price * (1-discount)), not just simple column references.

Production Hardening

Proper KDF for authentication (argon2), connection pooling, retry logic, and observability
(OpenTelemetry).

16 /17

Thank You!

GizmoEdge
Distributed SQL Engine
Web gizmodata.com/gizmoedge
GitHub github.com/gizmodata/gizmo-edge
@ Speaker Philip Moore
GizmoData Also check out GizmoSQL

Our single-node Arrow Flight SQL server — powered by DuckDB.
gizmodata.com/gizmosql|

Questions?

