
GizmoEdge
A Distributed SQL Engine for IoT and Edge
Analytics

Philip Moore

DuckDB Developer Meeting #1
January 30, 2026 • Pakhuis de Zwijger, Amsterdam

About Me
Philip Moore
Founder, GizmoData

Focus Areas
• Distributed SQL engines & query optimization

• Apache Arrow & Arrow Flight SQL

• DuckDB, PostgreSQL, Trino, Spark

• Cloud-native analytics on Kubernetes

• Edge computing & IoT data processing

Personal
🇺🇸 Former United States Marine Corps Reservist

🏅 Marine of the Year (2000) — Communications Co,
HQ Battalion, 4th Marine Division

🏠 North Port, FL — married to Scharlene,
3 kids, 3 dogs, 2 cats

2 / 17

DuckDB Contributions
• struct_insert() function

PR #3853 — new scalar function for structs

• BIT_COUNT HUGEINT support
PR #4440 — extended to 128-bit integers

• information_schema views
PR #12942 — referential constraint views

• httpfs: S3 Requester Pays mode
PRs #85, #99 — feature + bugfix for session tokens

• Documentation contributions
duckdb-web PRs #296, #303, #403, #5581

• Issues & feature requests
Bitmap aggregation (#3943), hash distribution
(#4417), hive partitioning (#12921), support for
encryption of DuckDB database file (password
protected) (#4512)

Data Enthusiast and builder
• Worked with Oracle technology for 15 years
• Expanded to open-source data technologies about

10 years ago
• I love the COUNT DISTINCT problem!
• Worked for P&G, HP, Dunnhumby, Kroger, Voltron

Data, and now GizmoData J

Background
• Married to Scharlene – 3 kids, 3 dogs, 2 cats
• Former U.S. Marine

Awards
• Marine of the Year (2000) – HQ Battalion 4th MarDiv
• Oracle DBA of the Year – North America 2016

The Challenge: Data at the Edge

Volume

IoT sensors, mobile
devices, and edge nodes
generate massive data
volumes—faster than
they can be centralized.

Cost

Cloud egress, storage, and
compute costs
scale linearly. Centralizing
everything
is economically
unsustainable.

Latency

Real-time decisions can’t
wait for
round-trips to the cloud.
Analytics must
happen where the data
lives.

3 / 17

What is GizmoEdge?
A distributed OLAP engine that uses DuckDB as its execution engine—coordinating parallel

query execution across heterogeneous workers, from cloud Kubernetes clusters to laptops,

Linux boxes, and iOS devices.

⚡ Divide & Conquer

Shards data across workers.
Aggregation queries run in parallel;
results are combined on the server.

📦 DuckDB-Powered

Each worker runs DuckDB locally.
Full SQL support, vectorized execution,
zero external dependencies.

🌐 Heterogeneous Workers

Cloud (K8s on AWS/Azure/GCP),
bare-metal Linux, macOS laptops,
and iOS devices—all as workers.

🔌 Arrow + WebSockets

Apache Arrow IPC for columnar
serialization. WebSocket/TLS for
secure, async communication.

4 / 17

Architecture Overview
Server (Coordinator)

• Parses SQL with PostgreSQL parser (pglast)

• Detects aggregate functions (SUM, AVG, COUNT, MIN, MAX)

• Distributes query to workers with assigned shards

• Aggregates partial results into final answer

Workers
• Download shard via pre-signed S3/Azure URL

• Execute query locally with DuckDB (read-only)

• Return results as Arrow IPC over WebSocket

• Can run on any platform: K8s, Linux, macOS, iOS

Client
• Interactive SQL REPL or web-based SQL Navigator

• Supports .set distributed / .set summarize toggles

• Receives Arrow-serialized results from server
5 / 17

WebSocket Protocol: Message Flow
All communication uses async WebSockets (with optional TLS/mTLS). Messages are JSON with a MessageKind discriminator.

Client Server Worker

Registration
AUTHENTICATE

DEVICE_UUID

REGISTER (hw, cpu, mem)

Shard Setup
SHARD_REQUEST

SHARD_DATASET (pre-signed URL)

↓ download + verify
SHA-256SHARD_CONFIRMATION (MD5)

Query
EXECUTE_QUERY (SQL)

↓ parse →
distributed_query QUERY (distributed SQL)

QUERY_PROGRESS

Results
RESULT (Arrow IPC base64)

↓ concat +
summary_queryQUERY_COMPLETED (Arrow IPC)

6 / 17

How GizmoEdge Uses DuckDB
On Every Worker

Worker opens shard as read-only DuckDB
con = duckdb.connect(database=shard_file,

read_only=True)
con.execute(f"PRAGMA threads={cpu_count}")
con.execute(f"PRAGMA memory_limit='{mem}b'")

Execute distributed query, return Arrow
result = con.execute(query).fetch_record_batch()
arrow_bytes = get_dataframe_ipc_bytes(result)

Server-Side Aggregation

Combine worker results with in-memory DuckDB
combined = pyarrow.concat_tables(worker_tables)

con = duckdb.connect(database=':memory:')
con.execute(f"PRAGMA threads={threads}")

Run summary query on combined results
final = con.execute(summary_query)

.fetch_record_batch()

Key Design Decisions
• DuckDB's embedded nature = zero deployment friction on edge devices (no server process needed)
• read_only=True on workers — safe concurrent access to shard files
• Container-aware: auto-detects CPU/memory from cgroups for Kubernetes pods
• TPC-H dbgen() built in — used for benchmarking and integration tests

7 / 17

Query Distribution: Divide & Conquer
The PostgreSQL parser (pglast) analyzes the AST to determine if a query contains aggregates. If so, the
query is distributed to workers and results are combined.

1. Client Query (TPC-H Q1)

SELECT l_returnflag, l_linestatus,
sum(l_quantity) AS sum_qty,
avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
count(*) AS count_order

FROM lineitem
WHERE l_shipdate <= '1998-09-02'
GROUP BY l_returnflag, l_linestatus;

2. Distributed Query (sent to workers)

SELECT l_returnflag, l_linestatus,
sum(l_quantity) AS sum_qty,
SUM(l_quantity) AS _avg_sum_avg_qty,
COUNT(l_quantity) AS _avg_count_avg_qty,
SUM(l_extendedprice) AS _avg_sum_avg_price,
COUNT(l_extendedprice) AS _avg_count_avg_price,
count(*) AS count_order

FROM lineitem WHERE ... GROUP BY ...;

⬇ Results from N workers
combined via

pyarrow.concat_tables()
3. Summary Query (server-side aggregation)

SELECT l_returnflag, l_linestatus,
SUM(sum_qty) AS sum_qty,
SUM(_avg_sum_avg_qty) / SUM(_avg_count_avg_qty) AS avg_qty,
SUM(_avg_sum_avg_price) / SUM(_avg_count_avg_price) AS avg_price,
SUM(count_order) AS count_order

FROM combined_result GROUP BY l_returnflag, l_linestatus;
8 / 17

The AVG Problem in Distributed Queries
You can’t average the averages. AVG is not a distributive aggregate—it must be

decomposed.

✖ Naïve: AVG of AVGs (Wrong)

Worker 1: AVG(qty) = 10 (5 rows)
Worker 2: AVG(qty) = 20 (95 rows)
Naïve: AVG(10, 20) = 15 ✖ WRONG

Correct answer: (5×10 + 95×20) / 100 = 19.5
The naïve approach ignores row counts
and over-weights small shards.

✔ GizmoEdge: SUM/COUNT
Decomposition

Worker 1: SUM=50, COUNT=5
Worker 2: SUM=1900, COUNT=95
Server: SUM(50+1900) / SUM(5+95)

= 1950 / 100 = 19.5 ✔

AVG(x) → SUM(x) + COUNT(x) on workers
Server computes: ΣSUM / ΣCOUNT
Mathematically correct regardless of shard sizes.

9 / 17

Shard Management & Data Flow

1

Bootstrap
DuckDB dbgen() generates
TPC-H
data as Parquet, then
shards into
N "databases"

2

Compress & Store
Each shard exported to
Parquet,
compressed with
Zstandard (.tar.zst),
uploaded to S3 or Azure
Blob

3

Manifest
YAML manifest tracks
shard ID,
name, SHA-256 hash, MD5
hash,
and file size

4

Worker Download
Server sends pre-signed
URL
(5 min expiry). Worker
downloads,
verifies SHA-256, reports
MD5

Shard Creation (Zstandard compression)

Export shard to Parquet
db.execute("""EXPORT DATABASE '{dir}' (

FORMAT PARQUET, COMPRESSION zstd,
ROW_GROUP_SIZE 100000)""")

Compress with Zstandard
cctx = zstandard.ZstdCompressor(level=3)
with zstandard.open(path, "wb", cctx=cctx) as f:

with tarfile.open(fileobj=f, mode="w") as tar:
tar.add(database_directory)

Worker Shard Verification

Worker downloads via pre-signed URL
shard_file = await copy_database_file(

source_path=presigned_url,
target_path=local_data_dir)

Integrity: SHA-256 verify + MD5 proof-of-work
sha256_hash = hashlib.sha256(data).hexdigest()
assert sha256_hash == server_hash # verify
md5_hash = hashlib.md5(data).hexdigest()
send md5 back to server as proof

10 / 17

Targeted Broadcast Sharding
Each worker receives a micro data warehouse — a complete star schema with a fraction of the

facts and only the dimension rows needed to satisfy joins.

How It Works
① Hash-Partition Facts
Fact table (e.g. lineitem) is split into N shards
using hash partitioning — each shard gets
an even fraction of rows.

② Filter Dimensions to Match
For each shard, only include dimension rows
(e.g. customer, supplier, part) that are
referenced by that shard’s fact rows.

③ Worker Gets a Star Schema
Each worker receives a self-contained
micro data warehouse. Inner joins between
facts and dimensions run entirely on the worker.

✔ Why This Matters
• Workers handle full star-schema joins locally

• No coordinator-side join work required

• Dimension data is minimized per shard — less I/O

• Each shard is a self-contained analytical unit

⚡ Future: Bloom Filter Optimization

Instead of exact FK lookups during shard creation,
use a bloom filter on dimension keys. Trades a small
number of false positives (extra dimension rows) for
substantially faster shard build times.

11 / 17

Technology Stack for Preview
Category Technology Role

SQL Engine DuckDB 1.4.4 Embedded OLAP engine on every node

Query Parsing pglast 7.11 PostgreSQL parser for AST analysis

Serialization Apache Arrow IPC Zero-copy columnar data exchange

Compression Zstandard Shard storage compression (level 3)

Networking websockets + TLS/mTLS Async WebSocket with mutual TLS

Cloud Storage S3, Azure Blob Pre-signed URLs for shard download

Auth Basic + OAuth2 (Clerk) SHA-256 passwords, JWT/JWKS tokens

Deployment Docker + Helm/K8s Multi-arch (amd64/arm64) images

Language Python 3.13+ / asyncio Async server with process pool workers

Mobile APNS (iOS) Push queries to offline mobile workers

12 / 17

Deployment: Cloud to Edge
Kubernetes (Production)

• Helm charts for server, workers, client, and web UI

• Server: 48 CPU cores, 384 GB RAM

• Workers: 3.8 CPU / 30 GB RAM each, NVMe storage

• Tested at TPC-H SF100 to SF10,000

• Multi-cloud: AWS EKS, Azure AKS, GCP GKE

• Coiled integration for elastic scaling

Edge / Local

• pip install gizmo-edge — runs anywhere Python runs

• Docker multi-arch images (amd64 + arm64)

• Bootstrap command: one-line setup with TPC-H data

• iOS workers via APNS push notifications

• macOS / Linux / Windows workers

• Zero-config DuckDB: auto-tunes threads & memory

One-Command Bootstrap for local development
Bootstrap: creates TLS certs, users, TPC-H data, and 11 shards
$ gizmo-edge-bootstrap --client-username=scott --client-password=tiger \

--worker-password=united --tpch-scale-factor=1 --shard-count=11

Start server, workers, and client
$ gizmo-edge-server &
$ for x in {1..11}; do gizmo-edge-worker --tls-roots=tls/server.crt --password=united & done
$ gizmo-edge-client --tls-roots=tls/server.crt --username=scott --password=tiger

13 / 17

Why DuckDB is the Perfect Fit
Embedded, Zero Dependencies
No server process to manage. A single file is the database. Workers open DuckDB databases as read-only—no
coordination overhead, no shared state.
Runs Everywhere
From 384 GB Kubernetes pods to a Raspberry Pi. DuckDB auto-tunes to available CPU and memory. GizmoEdge
reads cgroup limits for containers.
Built-in TPC-H Generator
DuckDB’s dbgen() function generates benchmark data natively. GizmoEdge uses this for bootstrapping test
environments and integration tests.
Arrow-Native
DuckDB’s fetch_record_batch() returns Arrow record batches directly—no conversion step. This is the data format
that flows over the wire.
Rich SQL Support
Full SQL with window functions, CTEs, complex expressions. The PostgreSQL parser ensures GizmoEdge
understands the same SQL dialect DuckDB speaks.

14 / 17

Live Demo

Distributed TPC-H Query Execution

1. Azure AKS cluster – 1,000 workers – 4,000 CPUs

2. Start server + multiple workers

3. Run TPC-H Queries with aggregates, joins, and filters

4. Show distributed vs. non-distributed execution

5. Toggle .set summarize = false to see raw worker results

15 / 17

What’s Next
1 Smarter Query Planning

Cost-based decisions on distribute vs. server-side execution. Support for more complex aggregation
patterns (HAVING, nested aggregates, windowing functions, etc).

2 Dynamic Worker Discovery
Workers self-register and auto-scale. Shard re-balancing when workers join or leave the cluster.

3 DuckDB Extension Integration
Leverage DuckDB extensions (spatial, ICU, httpfs) on workers. Extension-aware shard distribution.

4 Expression-Level AVG Support
Handle AVG over expressions like AVG(price * (1-discount)), not just simple column references.

5 Production Hardening
Proper KDF for authentication (argon2), connection pooling, retry logic, and observability
(OpenTelemetry).

16 / 17

Thank You!
Web gizmodata.com/gizmoedge

GitHub github.com/gizmodata/gizmo-edge

Speaker Philip Moore

Also check out GizmoSQL
Our single-node Arrow Flight SQL server — powered by DuckDB.
gizmodata.com/gizmosql

Questions?

