DuckPL: A Procedural Language in DuckDB

30" of January 2026 o DuckDB Developer Meeting #1

Denis Hirn

&4 denis.hirn@uni-tuebingen.de
University of Tubingen

) kryonix

Denis Hirn? €) kryonix?

Long-time DuckDB contributor since early 2020:
e Recursive/Materialized CTEs

e Some re-architecting of query decorrelation

e Various bug fixes and optimizations

Research focus:
e Database systems
» query optimization,
» execution engine design, and
» User-Defined Function optimization, aka. how to get rid of them
e Compilers and programming languages
e Bridging the gap between both fields

2/20

State of DuckDB UDFs

Supported Not Supported X

CREATE MACRO sequence(n) AS
IF n < 0 THEN
ELSE
do other stuff
END IF;

CREATE TABLE something AS (column type);

LALLLY sonething §

1|CREATE MACRO add(a, b) AS a + b;

O o0 ~N o Ui B W N =

MACROs:
e simple textual replacements
e no full-ledged procedural language for writing user-defined functions (UDFs) yet

Python, R, and other languages can be used to write UDFs, but:
e Require an external runtime

e Breaks the “Single-File, Zero-Dependency Database” promise
3/ 20

Introducing DuckPL!

Procedural PL/SQL, Native to DuckDB.

Procedural PL/SQL for DuckDB!

Procedural Logic (DuckPL) Recursive CTE (Pure SQL)

1 |CREATE FUNCTION collatz(y BIGINT) RETURNS BIGINT AS $$ 1 |SELECT

2 |DECLARE 2 | (WITH RECURSIVE collatz_cte(x, steps) AS (

3| steps BIGINT := 03 3 SELECT 5 AS x, O AS steps

4 [X BIGINT :=vy; 4 UNION ALL

5 |BEGIN 5 SELECT

6 | WHILE x > 1 LOOP 6 CASE WHEN x %7 2 = 0

7 IF x 7 2 = 0 THEN 7 THEN x / 2

8 X =X/ 2 8 ELSE 3 * x + 1

9 ELSE 9 END AS X,

10 X =3 xx+1; 10 steps + 1 AS steps

11 END IF; 1 FROM collatz_cte

12 steps := steps + 1; 12 WHERE x > 1

13 END LOOP; 13)

14 | RETURN steps; 14 SELECT steps

15 |END3 15 FROM collatz_cte

16 1883 16 WHERE x = 1

17 |SELECT collatz(5); 171) AS collatz;
A"':-; Easy! ¥ Not so easy*... *For average users

No external runtimes required Imperative programming right inside the system
PL/pgSQL compatibility Migration of existing codebases to DuckDB made easy

5720

Demo Time!

Implementing DuckPL: Key Components & Architecture

DuckPL Frontend
PL/SQL 1. PL/SQL 2. AST 3. Persistent
LD I Parser Transformer Storage
4. DuckPL
Executor

Parser Extension Custom parser for CREATE FUNCTION statements
Operator Extension Custom Bind and Plan for CREATE operations

7720

Parsing: The Missing Pieces #

1 [CREATE FUNCTION collatz(y BIGINT) 1. Incomplete CREATE FUNCTION parsing support: DuckDB's SQL
2 KEngNS BIGINT parser lacks grammar rules to parse AS $$... $$ functions.

3

4 [DECLARE 2. No Language Parser: The PL/pgSQL body is a generic string
s | steps BIGINT := 0; literal and must be parsed separately

6 | X BIGINT :=vy; '

7 |BEGIN

8 | WHILE x > 1 LOOP P

9 IF x 7 2 = 0 THEN s

10 X =X/ 25

11 ELSE

12 X =3 xx+1;

- END IF; Consequence We need to parse both the CREATE FUNCTION state-
14 steps := steps + 1; ment and the PL/pgSQL function body.

15 | END LOOP;

16 | RETURN steps;

17 |END;

181995

8/ 20

PL/pgSQL Parsing: The 1ibpg_query Approach

Phase 1: Parsing

e DuckPL needs two parsers:
1. for the CREATE FUNCTION statement
2. for the PL/pgSQL function body.

e \We can reuse the existing libpg_query parser for both!
» leverage missing pieces for CREATE FUNCTION parsing
» reuse the existing PL/pgSQL parser as-is

Phase 2: AST Transformation
e Implement transformer from 1ibpg_query AST to DuckPL AST

This mirrors exactly how DuckDB's original SQL parser was built in 2018!

create_gram.y pl_gram.y transformer

CREATE FUNCTION

Statement ’ Parse CREATE » Parse PL/pgSQL libpg_query AST
Statement Function Body to DuckPL AST

—» DuckPL AST

Soon™: Rip this apart and use a PEG-based parser!
9/20

Interlude: DuckPL AST — The Universal Internal Representation

@ duckpl DuckPL IR: minimalist and syntax-agnostic to support multiple source lan-
—= include
—> ast guages.

—= expressmns

B g‘{ ig{inecgﬁogpgpp e Complex constructs like FOR/WHILE loops desugar to LOOP + IF + BREAK

—= statements » Eliminates FOR, WHILE, CURSOR, ARRAY loops, etc.
& pl_ ass1ﬁnment hpp)) .
a B{ block.hpp e No CASE statements: Everything simplifies to an IF statement.

p
—i pl_declare. Rpp

I: - §§"é5u¥£"hpp Source Language (PL/pgSQL) Internal DuckPL IR AST

& pl open. hop WHILE counter < 10 LOOP
let counter = counter + 1;

1
—&_pl_stop.hpp 2 counter := counter + 1;
—& pl_cursor.hpp 3 |END LOOP;
4

—l pl_expression.hpp

—& pl_statement.hpp RETURN counter;
—am parser

—am storage

—im parser

—am third_party

—& pl_print.hpp

¥

emit counter;
stop;

o) OB W N -

Simplifies Interpreter Reduces complexity of control flow handling

Future Language Support A new procedural language (PL/Python, PL/Duck)
requires just Transformer — DuckPL AST

Simplifies Compilation Easier to compile DuckPL AST to SQL

10/ 20

Storage: Persisting and Registering DuckPL UDFs

Persistent Storage 1 |CREATE TABLE duckpl_functions (
o UDFs are stored in duckpl_functions table. 2| function_id BIGINT PRIMARY KEY,
e AST is serialized and stored as a BLOB. j iﬁgitigz—ﬁﬂ;dagg?im

. . I . b
o Ayo!ds unnecessary re-parsing. 5 | function_arg names TEXT[],
e Similar to Ducklake macros. 6 | function_arg types TEXT[],

. . 7| function_return_types TEXT[],
Registration on Startu s | function_returns_set BOOLEAN,
g P .

e Load stored UDFs from duckpl_functions. 9 iU"CEO”—“a"‘eTE)'?T(T NOT NULL,
e Deserialize AST and register in the catalog. f fﬂﬂiégﬁ‘ﬁgﬁy BLOE,s)-
o UDFs are immediately available without parsing. - ’

DuckPL Frontend __ Serialize BLOB Deserialize | pyckDB Startup Register | DuckDB Catalog

DuckPL AST Format Load UDFs Ready-to-use

11720

Execution: The Stack-Driven Interpreter

Simple tree-walk interpreter, but avoids recursive calls by using an explicit stack of frames:
State Management Execution can be paused and resumed at any point
No C++ recursion No stack depth limits, no risk of stack overflows

1 |@— LOOP { 1 |@ LOOP { 1 |@ LOOP {

2 IF NOT x > 1 THEN 2 |@— IF NOT x > 1 THEN 2 IF NOT x > 1 THEN
3 BREAK; 3 BREAK; 3 BREAK;

4 END IF; 4 END IF; 4 END IF;

5 IF x 7 2 = 0 THEN 5 RETURN NEXT x; s (@— RETURN NEXT x;

6 .. 6 . 6 .

7 Iy 7 ¥ 7 Iy

8 |oee 8 lews 8 leee

gl PLIF = Sl PLERit »

o K 1] PLLoop = 13 PLLoop *
... Stack Frames Stack Frames Stack Frames ...

This design allows DuckPL to stream results efficiently without buffering everything in memory.

12 /20

Execution: Streaming Output Like an Operator

O 00 ~N o U1 B W N =

—_ A A A
(o2 TR & 5 BN - OF B) S N <>

CREATE FUNCTION infinite()

RETURNS SETOF BIGINT AS $$
DECLARE
1 BIGINT := 03
BEGIN
LOOP
1:=(1+1)7 10003
RETURN NEXT 1i;
END LOOP;
END
2%

-- Create 10 DataChunks:
SELECT =

FROM infinite()

LINIT 10 = 2048;

PostgreSQL: Buffers all results before returning anything
e Will never return anything from infinite() function

e Leads to memory ballooning @

e Cannot be interrupted (e.g., via LINIT)

3

DuckPL's interpreter is Fully streaming:
Memory Efficiency No unnecessary buffering of results

e RETURN NEXT statements write result into output chunk
Interruptibility WWhen chunk is full, return operatorResultType: :HAVE_MORE_OUTPUT

e Interpreter pauses and resumes when requested:

Enabled by explicit stack of frames design

o Allows early termination (e.g., via LINIT)

Architectural Fit Follows same idea as physical operators in DuckDB @

13/20

Execution: Expression Fast-Path

W 00 ~N O U1 B W NN =

—_ A A A A
O ~N OO U1 BAwWw N s, o

CREATE FUNCTION collatz(y BIGINT)

RETURNS BIGINT AS $$
DECLARE
steps BIGINT := [§;
X BIGINT := s
BEGIN
WHILE LOOP
IF THEN
x = (s
ELSE
x := ENEEED;

END IF;

steps ¢~ EETREND:

END LOOP;
RETURN steps;
END;

$%5
SELECT collatz(5);

The Slow Way:
Method Wrapping every expression in a SELECT statement
Bottleneck Triggers the Full SQL Pipeline (Binding, Optimization,

Execution) for every single expression %
This becomes super slow & without optimization!

The Fast Path:
Use ExpressionExecutor for simple expressions

Not supported.. But how we do it anyway “=:

1. Prepare a dummy SELECT statement

2. Extract the expression from prepared statement
3. Cache an ExpressionExecutor instantiated with

4. Execute against a DataChunk containing local variables

Result: #: It's fast @ now (we've seen speedups of 30x).

* This is vastly simplified; We have to do a lot more work to prepare the expression properly to make
it cacheable.
15/ 20

DuckPL Feature Support

v

DuckPL Architecture: The Path to Hybrid Execution

DuckPL Frontend
1. PL/SQL 2. AST 3. Persistent
Parser Transformer Storage

Interpretation Compilation

Far future work:
Partial Compilation

""" Interleaved with Interpretation """

More research needed!

17720

Future Work — The Vision for DuckPL

Interactive Mode Allow DuckPL statements directly in the CLI, for a REPL-like experience:

1..10:
X = (SELECT RANDOMO));

X > 0.5:

Modern Syntax Follow friendly SQL idea for PL syntax

e Add a secondary, lightweight syntax

e Add PL/Python frontend
Next-Gen Parser Move to PEG based PL/pegSQL for better DuckDB integration
Compiled Execution Integrate our UDF compilation research into DuckPL
Production Readiness Improve error messages and debugging support
Vectorized Interpretation Implement vectorized interpretation
Advanced Features Support table-valued variables

There is so much more to do!
18/ 20

Conclusion

Compatibility First

Bring PL/pgSQL functionality to the
DuckDB ecosystem.

The Win:

o Compatibility layer for existing
PL/pgSQL codebases.

e Minimal learning curve for Post-
gres users.

e Works with existing tools and
scripts immediately.

Smart Execution

Built using tried-and-tested tech-

niques from DuckDB's history.
The Win:

e Stack-driven interpretation:
enables streaming (no memory
ballooning).

e No external runtimes.

e Ship your database « ship your
code. No dependencies.

The Vision

Designed with advanced optimiza-
tion techniques in mind:

Apply Automatic UDF Compilation
and Inlining™ research.

The Win:

Native Speed Massive improve-
ments through compilation to
SQL.

Hybrid Execution Interleaved in-
terpretation for best perfor-
mance and full feature set.

* Which | extensively worked on during my
PhD—so I'm biased %2

% DuckPL will be open-sourced soon!

19/ 20

DuckPL: A Procedural Language in DuckDB

30" of January 2026 o DuckDB Developer Meeting #1

Denis Hirn

&4 denis.hirn@uni-tuebingen.de
University of Tubingen

) kryonix

	DuckPL: A Procedural Language in DuckDB Bringing PL/pgSQL to DuckDB
	Denis Hirn?  kryonix?
	State of DuckDB UDFs
	Procedural PL/SQL for DuckDB!
	Implementing DuckPL: Key Components & Architecture
	Parsing: The Missing Pieces 󱓒
	PL/pgSQL Parsing: The libpg_query Approach
	Interlude: DuckPL AST — The Universal Internal Representation
	Storage: Persisting and Registering DuckPL UDFs
	Execution: The Stack-Driven Interpreter
	Execution: Streaming Output Like an Operator
	Execution: Expression Fast-Path
	DuckPL Feature Support
	DuckPL Architecture: The Path to Hybrid Execution
	Future Work — The Vision for DuckPL
	Conclusion

	DuckPL: A Procedural Language in DuckDB Bringing PL/pgSQL to DuckDB

