
DuckPL: A Procedural Language in DuckDB
Bringing PL/pgSQL to DuckDB

30th of January 2026 DuckDB Developer Meeting #1

Denis Hirn

 denis.hirn@uni-tuebingen.de
University of Tübingen

 kryonix

Denis Hirn?  kryonix?

Long-time DuckDB contributor since early 2020:
• Recursive/Materialized CTEs
• Some re-architecting of query decorrelation
• Various bug fixes and optimizations

Research focus:
• Database systems
‣ query optimization,
‣ execution engine design, and
‣ User-Defined Function optimization, aka. how to get rid of them

• Compilers and programming languages
• Bridging the gap between both fields

2 / 20

State of DuckDB UDFs

Supported

1 CREATE MACRO add(a, b) AS a + b;

Not Supported

1 CREATE MACRO sequence(n) AS
2 IF n < 0 THEN
3 do some stuff
4 ELSE
5 do other stuff
6 END IF;
7 do some more
8 CREATE TABLE something AS (column type);
9 RETURN something ;

MACROs:
• simple textual replacements
• no full-fledged procedural language for writing user-defined functions (UDFs) yet

Python, R, and other languages can be used to write UDFs, but:
• Require an external runtime
• Breaks the “Single-File, Zero-Dependency Database” promise

3 / 20

Introducing DuckPL!

Procedural PL/SQL, Native to DuckDB.

Procedural PL/SQL for DuckDB!

Procedural Logic (DuckPL) Recursive CTE (Pure SQL)
1 CREATE FUNCTION collatz(y BIGINT) RETURNS BIGINT AS $$
2 DECLARE
3 steps BIGINT := 0;
4 x BIGINT := y;
5 BEGIN
6 WHILE x > 1 LOOP
7 IF x % 2 = 0 THEN
8 x := x / 2;
9 ELSE
10 x := 3 * x + 1;
11 END IF;
12 steps := steps + 1;
13 END LOOP;
14 RETURN steps;
15 END;
16 $$;
17 SELECT collatz(5);

1 SELECT
2 (WITH RECURSIVE collatz_cte(x, steps) AS (
3 SELECT 5 AS x, 0 AS steps
4 UNION ALL
5 SELECT
6 CASE WHEN x % 2 = 0
7 THEN x / 2
8 ELSE 3 * x + 1
9 END AS x,
10 steps + 1 AS steps
11 FROM collatz_cte
12 WHERE x > 1
13)
14 SELECT steps
15 FROM collatz_cte
16 WHERE x = 1
17) AS collatz;

 Easy! Not so easy*… *For average users

No external runtimes required Imperative programming right inside the system
PL/pgSQL compatibility Migration of existing codebases to DuckDB made easy

5 / 20

Demo Time!

Implementing DuckPL: Key Components & Architecture

DuckPL Frontend

PL/SQL
UDF Input

1. PL/SQL

Parser

2. AST

Transformer

3. Persistent

Storage

4. DuckPL

Executor

Parser Extension Custom parser for CREATE FUNCTION statements
Operator Extension Custom Bind and Plan for CREATE operations

7 / 20

Parsing: The Missing Pieces 󱓒

1 CREATE FUNCTION collatz(y BIGINT)
2 RETURNS BIGINT
3 AS $$
4 DECLARE
5 steps BIGINT := 0;
6 x BIGINT := y;
7 BEGIN
8 WHILE x > 1 LOOP
9 IF x % 2 = 0 THEN
10 x := x / 2;
11 ELSE
12 x := 3 * x + 1;
13 END IF;
14 steps := steps + 1;
15 END LOOP;
16 RETURN steps;
17 END;
18 $$;

1. Incomplete CREATE FUNCTION parsing support: DuckDB’s SQL
parser lacks grammar rules to parse AS $$... $$ functions.

2. No Language Parser: The PL/pgSQL body is a generic string
literal and must be parsed separately.

Consequence We need to parse both the CREATE FUNCTION state
ment and the PL/pgSQL function body.

8 / 20

PL/pgSQL Parsing: The libpg_query Approach

Phase 1: Parsing
• DuckPL needs two parsers:

1. for the CREATE FUNCTION statement
2. for the PL/pgSQL function body.

• We can reuse the existing libpg_query parser for both!
‣ leverage missing pieces for CREATE FUNCTION parsing
‣ reuse the existing PL/pgSQL parser as-is

Phase 2: AST Transformation
• Implement transformer from libpg_query AST to DuckPL AST

This mirrors exactly how DuckDB’s original SQL parser was built in 2018!

CREATE FUNCTION
Statement

create_gram.y

Parse CREATE
Statement

pl_gram.y

Parse PL/pgSQL
Function Body

transformer

libpg_query AST
to DuckPL AST

DuckPL AST

Soon™: Rip this apart and use a PEG-based parser!
9 / 20

Interlude: DuckPL AST — The Universal Internal Representation

 duckpl
├─ src
│ ├─ include
│ │ ├─ ast
│ │ │ ├─ expressions
│ │ │ │ ├─ pl_fetch_cursor.hpp
│ │ │ │ └─ pl_inline_sql.hpp
│ │ │ ├─ statements
│ │ │ │ ├─ pl_assignment.hpp
│ │ │ │ ├─ pl_block.hpp
│ │ │ │ ├─ pl_break.hpp
│ │ │ │ ├─ pl_declare.hpp
│ │ │ │ ├─ pl_emit.hpp
│ │ │ │ ├─ pl_execute.hpp
│ │ │ │ ├─ pl_if.hpp
│ │ │ │ ├─ pl_loop.hpp
│ │ │ │ ├─ pl_open.hpp
│ │ │ │ ├─ pl_print.hpp
│ │ │ │ └─ pl_stop.hpp
│ │ │ ├─ pl_cursor.hpp
│ │ │ ├─ pl_expression.hpp
│ │ │ └─ pl_statement.hpp
│ │ ├─ parser
│ │ └─ storage
│ └─ parser
└─ third_party

DuckPL IR: minimalist and syntax-agnostic to support multiple source lan
guages.

• Complex constructs like FOR/WHILE loops desugar to LOOP + IF + BREAK
‣ Eliminates FOR, WHILE, CURSOR, ARRAY loops, etc.

• No CASE statements: Everything simplifies to an IF statement.

Source Language (PL/pgSQL) Internal DuckPL IR AST

1 WHILE counter < 10 LOOP
2 counter := counter + 1;
3 END LOOP;
4 RETURN counter;

↦

1 loop {
2 if (counter >= 10) { break; }
3 let counter = counter + 1;
4 }
5 emit counter;
6 stop;

Simplifies Interpreter Reduces complexity of control flow handling
Future Language Support A new procedural language (PL/Python, PL/Duck)

requires just Transformer ↦ DuckPL AST
Simplifies Compilation Easier to compile DuckPL AST to SQL

10 / 20

Storage: Persisting and Registering DuckPL UDFs

Persistent Storage
• UDFs are stored in duckpl_functions table.
• AST is serialized and stored as a BLOB.
• Avoids unnecessary re-parsing.
• Similar to DuckLake macros.

Registration on Startup
• Load stored UDFs from duckpl_functions.
• Deserialize AST and register in the catalog.
• UDFs are immediately available without parsing.

1 CREATE TABLE duckpl_functions (
2 function_id BIGINT PRIMARY KEY,
3 function_uuid UUID,
4 function_num_args INT,
5 function_arg_names TEXT[],
6 function_arg_types TEXT[],
7 function_return_types TEXT[],
8 function_returns_set BOOLEAN,
9 function_name TEXT NOT NULL,
10 function_src TEXT,
11 function_body BLOB);

Serialize Deserialize RegisterDuckPL Frontend
DuckPL AST

BLOB
Format

DuckDB Startup
Load UDFs

DuckDB Catalog
Ready-to-use

11 / 20

Execution: The Stack-Driven Interpreter

Simple tree-walk interpreter, but avoids recursive calls by using an explicit stack of frames:
State Management Execution can be paused and resumed at any point
No C++ recursion No stack depth limits, no risk of stack overflows

1 ➊→ LOOP {
2 IF NOT x > 1 THEN
3 BREAK;
4 END IF;
5 IF x % 2 = 0 THEN
6 ...
7 }
8 ...

➊→ PLLoop * Execute
... Stack Frames ...

1 ➊ LOOP {
2 ➋→ IF NOT x > 1 THEN
3 BREAK;
4 END IF;
5 RETURN NEXT x;
6 ...
7 }
8 ...

➋→ PLIf * Execute
➊ PLLoop * Resume

... Stack Frames ...

1 ➊ LOOP {
2 IF NOT x > 1 THEN
3 BREAK;
4 END IF;
5 ➌→ RETURN NEXT x;
6 ...
7 }
8 ...

➌→ PLEmit * Execute
➊ PLLoop * Resume

... Stack Frames ...

This design allows DuckPL to stream results efficiently without buffering everything in memory.

12 / 20

Execution: Streaming Output Like an Operator

1 CREATE FUNCTION infinite()
2 RETURNS SETOF BIGINT AS $$
3 DECLARE
4 i BIGINT := 0;
5 BEGIN
6 LOOP
7 i := (i + 1) % 1000;
8 RETURN NEXT i;
9 END LOOP;
10 END
11 $$;
12
13 -- Create 10 DataChunks:
14 SELECT *
15 FROM infinite()
16 LIMIT 10 * 2048;

PostgreSQL: Buffers all results before returning anything
• Will never return anything from infinite() function
• Leads to memory ballooning
• Cannot be interrupted (e.g., via LIMIT)

DuckPL’s interpreter is Fully streaming:
Memory Efficiency No unnecessary buffering of results

• RETURN NEXT statements write result into output chunk
Interruptibility When chunk is full, return OperatorResultType::HAVE_MORE_OUTPUT

• Interpreter pauses and resumes when requested:
Enabled by explicit stack of frames design

• Allows early termination (e.g., via LIMIT)
Architectural Fit Follows same idea as physical operators in DuckDB

13 / 20

Execution: Expression Fast-Path

1 CREATE FUNCTION collatz(y BIGINT)
2 RETURNS BIGINT AS $$
3 DECLARE
4 steps BIGINT := 0 ;
5 x BIGINT := y ;
6 BEGIN
7 WHILE x > 1 LOOP
8 IF x % 2 = 0 THEN
9 x := x / 2 ;
10 ELSE
11 x := 3 * x + 1 ;
12 END IF;
13 steps := steps + 1 ;
14 END LOOP;
15 RETURN steps;
16 END;
17 $$;
18 SELECT collatz(5);

The Slow Way:
Method Wrapping every expression in a SELECT ⟨...⟩ statement
Bottleneck Triggers the Full SQL Pipeline (Binding, Optimization,

Execution) for every single expression
This becomes super slow 󱙷 without optimization!

The Fast Path:
 Use ExpressionExecutor for simple expressions

Not supported.. But how we do it anyway :
1. Prepare a dummy SELECT x > 1 statement
2. Extract the expression x > 1 from prepared statement
3. Cache an ExpressionExecutor instantiated with x > 1
4. Execute against a DataChunk containing local variables

Result: It’s fast 󱙷󱙷󱙷󱙷󱙷󱙷 now (we’ve seen speedups of 30×).

* This is vastly simplified; We have to do a lot more work to prepare the expression properly to make
it cacheable.

15 / 20

DuckPL Feature Support

Supported

• Scalar/Table-valued UDFs
• Variables and Assignments
• All Data Types
• Composite Types types like
lineitem

• Control Flow
‣ IF
‣ LOOP, WHILE, and FOR loops
‣ BREAK and CONTINUE
‣ RETURN and RETURN NEXT

• Cursors (FETCH INTO)
• Debugging (RAISE INFO)

Planned

• Aggregate/Window UDFs
• Exception handling
• Transactions COMMIT, ROLLBACK
• UDF Optimizer

Compilation to Pure SQL
• Massively improve performance
• Leverage DuckDB’s execution

engine
• Use WITH RECURSIVE for complex

control flow

Not for now or never *

• Dynamic SQL (Use query(...))
• Advanced cursor features like
SCROLL and MOVE

• Triggers

* PRs welcome! As soon as DuckPL becomes
open source.

16 / 20

DuckPL Architecture: The Path to Hybrid Execution

DuckPL Frontend

Far future work:
Partial Compilation

Interleaved with Interpretation
More research needed!

Interpretation Compilation

PL/SQL
UDF Input

1. PL/SQL

Parser

2. AST

Transformer

3. UDF

Optimizer

3. Persistent

Storage

4. Execution

Dispatcher

5a. DuckPL
Executor

5b. To SQL
Compilation

Planned
Future Work

17 / 20

Future Work — The Vision for DuckPL

Interactive Mode Allow DuckPL statements directly in the CLI, for a REPL-like experience:

❯ duckdb
D LET y = 0 :: BIGINT;
D FOR i IN 1..10:
 LET x = (SELECT RANDOM());
 IF x > 0.5:
 LET y = y + 1;
D PRINT y;
5
D 🮋

Modern Syntax Follow friendly SQL idea for PL syntax
• Add a secondary, lightweight syntax
• Add PL/Python frontend

Next-Gen Parser Move to PEG based PL/pegSQL for better DuckDB integration
Compiled Execution Integrate our UDF compilation research into DuckPL
Production Readiness Improve error messages and debugging support
Vectorized Interpretation Implement vectorized interpretation
Advanced Features Support table-valued variables

There is so much more to do!
18 / 20

Conclusion

Compatibility First

Bring PL/pgSQL functionality to the
DuckDB ecosystem.

The Win:

• Compatibility layer for existing
PL/pgSQL codebases.

• Minimal learning curve for Post
gres users.

• Works with existing tools and
scripts immediately.

Smart Execution

Built using tried-and-tested tech
niques from DuckDB’s history.

The Win:

• Stack-driven interpretation:
enables streaming (no memory
ballooning).

• No external runtimes.
• Ship your database ↔ ship your

code. No dependencies.

The Vision

Designed with advanced optimiza
tion techniques in mind:
Apply Automatic UDF Compilation
and Inlining* research.

The Win:

Native Speed Massive improve
ments through compilation to
SQL.

Hybrid Execution Interleaved in
terpretation for best perfor
mance and full feature set.

* Which I extensively worked on during my
PhD—so I’m biased

 DuckPL will be open-sourced soon!

19 / 20

DuckPL: A Procedural Language in DuckDB
Bringing PL/pgSQL to DuckDB

30th of January 2026 DuckDB Developer Meeting #1

Denis Hirn

 denis.hirn@uni-tuebingen.de
University of Tübingen

 kryonix

	DuckPL: A Procedural Language in DuckDB Bringing PL/pgSQL to DuckDB
	Denis Hirn?  kryonix?
	State of DuckDB UDFs
	Procedural PL/SQL for DuckDB!
	Implementing DuckPL: Key Components & Architecture
	Parsing: The Missing Pieces 󱓒
	PL/pgSQL Parsing: The libpg_query Approach
	Interlude: DuckPL AST — The Universal Internal Representation
	Storage: Persisting and Registering DuckPL UDFs
	Execution: The Stack-Driven Interpreter
	Execution: Streaming Output Like an Operator
	Execution: Expression Fast-Path
	DuckPL Feature Support
	DuckPL Architecture: The Path to Hybrid Execution
	Future Work — The Vision for DuckPL
	Conclusion

	DuckPL: A Procedural Language in DuckDB Bringing PL/pgSQL to DuckDB

