
🚜 Query.Farm - https://query.farm

DuckDB - Meetup #3 - Amsterdam

🚜 Query.Farm
The place where DuckDB
Community Extensions Grow

Written by: L.Mangani, R. Conover
Presented by: L. Mangani on 2025-09-16
Sponsored by: Query.Farm LLC, QXIP BV

Contact: hello@query.farm

https://query.farm
mailto:hello@query.farm

🚜 Query.Farm - https://query.farm

DuckDB Community Extensions 👥🦆👥
Where did we hatch from 🐣

quackscience

Lorenzo Manganiquery.farm
Rusty Conover

https://query.farm

🚜 Query.Farm - https://query.farm

★ Query Farm has created 20+ extensions with
over 2,000,000 downloads and growing

★ Youʼll see a few very quick examples from a
few of our most popular/useful extensions

★ Query Farm is interested in helping you adopt
understand and extend DuckDB 🎓

★ You are invited to join in and grow with us 🌾

What will you learn today? 🐣

https://query.farm

🚜 Query.Farm - https://query.farm

🚜 Query.Farm
What we do:
• Boost DuckDB with custom extensions
• Build developer and userʼs tools
• Embed DuckDB into modern data systems

Who we are:
• Database engineers & systems hackers
• DuckDB contributors
• Makers of elegant & lightweight solutions

Joined the Flock:
• Quackscience joined us in mid-2025 🎉
• Fully Independent from DuckDB Labs/Foundation 💛

 🚜
+

https://query.farm

🚜 Query.Farm - https://query.farm

What have we made possible? 🧩
If DuckDB doesnʼt do it yet, we can try make it happen.

So far weʼve created 20 extensions that have been downloaded over 2,000,000 times.

✈ airport
🦆 bitfilters
🔒 crypto
📝 chsql
⏰ cronjob
📊 datasketches
🧮 evalexpr_rhai
⏲ tsid

🔍 fuzzycomplete
#⃣ hashfuncs
🖥 httpserver
🌐 httpclient
🗺 lindel
🌲 marisa
📜 quickjs
📡 radio

🪼 pyroscope
⚡ rapidfuzz
🧱 redis
🐚 shellfs
🎲 stochastic
📈 textplot
🌊 tributary
🕸 webmacro

https://query.farm

🚜 Query.Farm - https://query.farm

We Can Build With/For You 🧱
Who Do We Help:

🌱 Product teams planting analytics into apps
🚜 Data engineers modernizing pipelines
🏗 Platform teams updating legacy data infra
🧩 Software engineers designing integrations
🐥 Anyone building a DuckDB-powered architecture

https://query.farm

🚜 Query.Farm - https://query.farm

🚜 Query.Farm Extension Showcase

https://query.farm

🚜 Query.Farm - https://query.farm

1. Access data anywhere
APIs, services, non-tabular or unsupported formats

2. Enable Data-as-a-Service
3. Run remote scalar UDF) and table functions
4. Serve data with fine-grained access control

Row & column level filters
5. Let DuckDB fly to remote servers

LOAD airport;

-- Attach a database named 'hello'
ATTACH 'hello' (TYPE AIRPORT, location 'grpc+tls://hello-airport.query.farm');

-- Query the remote data
SELECT * FROM hello.static.greetings WHERE language = 'Dutch';

Airport Extension
Query, Modify and Serve Data with Apache Arrow Flight

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

1. Supports two-way communication
Receive events: buffered and queryable with SQL
Send events: buffered with delivery tracking

2. Bridges SQL and event driven architectures
3. Blocking and non-blocking modes available

LOAD radio;

-- Open a connection to a Bluesky websocket server

CALL radio_subscribe('wss://jetstream2.us-east.bsky.network/subscribe');

-- Block until a message is received for 10 seconds.

CALL radio_listen(true, interval '10 seconds');

-- Show messages

SELECT * FROM radio_received_messages();

Radio Extension
Interact with real-time event systems, Websockets, Redis Pub/Sub

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

1. Read from stdout of any shell command
2. Write to the stdin of shell commands

(compress, upload, custom code)
3. Pipeline data through DuckDB for ad hoc ETL
4. No intermediate files, reducing disk I/O

LOAD shellfs;

-- Read CSV data from a external program

SELECT * FROM read_csv('python data-generator.py |');

-- Read all data from a pipe

SELECT * FROM read_text('ps axuwww |');

-- Write data to a Python program via a pipe

COPY (SELECT * FROM generate_series(1000)) TO '| python consumer.py' (FORMAT 'CSV');

ShellFS Extension
Use pipes and treat shell commands like files in DuckDB

Versions: 1.3 1.41.2

https://query.farm
http://data-generator.py
http://consumer.py

🚜 Query.Farm - https://query.farm

1. Read Support: Directly stream records from topics into DuckDB
tables and queries.

2. Future Development:
a. Write - write data back to Kafka from DuckDB
b. Registry Service Integration
c. Protobuf, Avro, JSON Record Formats
d. CDC stream integration

LOAD tributary;

-- Read all messages on a topic

SELECT * FROM tribuary_scan_topic('test-topic', "bootstrap.servers" := 'kafka-cluster.query.farm:9092')

Tributary Extension
Integration with Apache Kafka

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

1. Adds probability, statistical and random sampling functions.
2. Enables PDF/PMF, CDF, quantiles and random sampling
3. Provides distribution properties like mean and variance.
4. Distributions: Normal, Uniform, Binomial, Poisson, Exponential and

more…
5. Uses: A/B tests, anomaly detection, statistical significance,

confidence intervals, Monte Carlo Simulations, hypothesis
testing

LOAD stochastic;

-- Probability density function

SELECT * FROM dist_normal_pdf(1.5, 0, 1);

-- Sample from the normal distribution

SELECT dist_normal_sample(0, 1.0) * FROM range(10);

Stochastic Extension
Statistical distributions for DuckDB

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

1. Supports Strings, Hashes, Lists and Key operations.
2. Operations include SCAN, MGET, HGET, HSET, DEL, EXISTS, HSCAN.
3. Allows data in Redis to interact with DuckDB without custom code

LOAD redis;

-- Set a value
SELECT redis_set('user:1', 'John Doe', 'redis') as result;
-- Get a value
SELECT redis_get('user:1', 'redis') as user_name;
-- Set multiple values in a query
INSERT INTO users (id, name)

SELECT id, redis_set('user:' || id::VARCHAR, name, 'my_redis') FROM new_users;
-- Get hash field
SELECT redis_hget('user:1', 'email', 'redis') as email;

Redis Extension
Native Redis Client for DuckDB

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

The HTTP Server extension transforms DuckDB instances into fast, tiny
multi-player HTTP OLAP API designed to execute queries and stream results.

The service supports several formats (CSV,TSV,JSON) and it loosely compatible
with the ClickHouse HTTP API baseline. The HTTP Server extension supports
Authentication (Basic Auth or X-Token) and embeds a User-Interface to interact
with the database(s), executing queries and returning data with zero overhead

INSTALL httpserver FROM community;
LOAD httpserver;

-- Start the embedded API server
SELECT httpserve_start('localhost', 80, 'user:pass');
┌───┐
│ HTTP server started on 0.0.0.0:80 │
└───┘

Query with any HTTP client
curl -X POST -d "SELECT version()" "http://user:pass@localhost/"

HTTP Server Extension
Embedded API Server w/ Query User Interface

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

The HTTP Client extension enables direct querying of HTTP endpoints from within
DuckDB SQL allowing users to fetch remote data over HTTP/HTTPS, integrate
APIs, and join external web resources with local analytics.

This extension provides GET/POST helpers and was designed by and for data
engineers who need to enrich DuckDB queries with any dataset from web
services, REST APIs, or cloud-hosted archive, making it easier to build data
pipelines and joins with remote systems without leaving native DuckDB SQL

INSTALL http_client FROM community;
LOAD http_client;

Functions

● http_get(url)

● http_post(url, headers, params)
○ Sends POST request with params encoded as a JSON object

● http_post_form(url, headers, params)

○ Sends POST request with params being application/x-www-form-urlencoded encoded

HTTP Client Extension
Simple HTTP GET/POST Client helpers for DuckDB

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

The CHSQL extension implementa 100+ command and function macros for SQL
dialect compatibility between ClickHouse and DuckDB in queries and functions.

The CHSQL Native extension implements a native binary ClickHouse scanner
and allows users to leverage DuckDB’s analytical capabilities while accessing data
and functions in ClickHouse servers, seamlessly bridging the two systems for
efficient data analysis and interoperability. Supports encryption and authentication

INSTALL chsql FROM community;
LOAD chsql;

--- Use any of the 100+ ClickHouse Macros
SELECT IPv4StringToNum('127.0.0.1'), IPv4NumToString(2130706433);

INSTALL chsql_native FROM community;
LOAD chsql_native;

--- Use native binary scanner to access remote clickchouse services
SELECT * FROM clickhouse_scan("SELECT version(), 'quack');
--- Read and Write native clickhouse binary files
SELECT * FROM clickhouse_native('/tmp/numbers.clickhouse');
SELECT number FROM numbers(1) INTO OUTFILE '/tmp/numbers.clickhouse' FORMAT Native;

CHSQL Client Extension
100 Clickhouse SQL Macros + Native Binary scanner

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

The Cronjob extension implements a cron scheduler and runner within DuckDB
able to run and execute SQL queries, functions and macros. No surprises there.
Ready to run trivial (downsampling, compact) or dangerous tasks (truncate, drop)
and ready to interact with other event based extensions such as Radio

Scheduled jobs are accessible through a dedicated table function where they can
be inspected, managed and deleted within a running DuckDB session.

INSTALL cronjob FROM community;

LOAD cronjob;

-- Every 15 seconds during hours 1-4
SELECT cron('SELECT now()', '*/15 * 1-4 * * *');

-- Every Monday through Friday at 7:00:00 AM
SELECT cron('SELECT data_cleanup()', '0 0 7 ? * MON-FRI');

-- Every 5 minute (wipe old data)
SELECT cron('DELETE FROM somewhere WHERE ts < NOW() - INTERVAL ''1 hour''', '* /5 * * * *');
-- Inspect running Jobs
SELECT * FROM cron_jobs();

Cronjob Extension
Execute and Schedule DuckDB queries using CRON

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

The WebMacro extension was born from a discord idea - what if we could just
hot-load scalar and table function macros as if they were DuckDB extensions?

Just write a simple or complex macro, upload it anywhere and you’re ready to go!

All you need is DuckDB Webmacro and your SQL knowledge to become a maker!

INSTALL webmacro FROM community;

LOAD webmacro;

-- Share & Load a webmacro from github/gist/pasties/etc
SELECT load_macro_from_url('https://quacks.cc/r/search_posts') as res;

-- Use your webmacro loaded functions instantly
SELECT * FROM search_posts('qxip.bsky.social', text := 'quack');
┌────────────────┬──────────────┬──────────────────────┬───┬─────────┬─────────┬───────┬───
─────┐
│ qxip.bsky.social │ qxip │ This is super cool… │ … │ 1 │ 0 │ 1 │ 0 │
│ qxip.bsky.social │ qxip │ github.com/quacksc… │ … │ 0 │ 1 │ 2 │ 0 │
│ qxip.bsky.social │ qxip │ #DuckDB works grea… │ … │ 2 │ 3 │ 24 │ 0 │
└──

────┘

WebMacro Extension
Load and Share DuckDB Macros w/o Writing Extensions

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

The Pyroscope extension implements an on-demand continuous profiling agent
(pprof) tracing executions for the running DuckDB session and executed queries.

Telemetry can be saved locally as pprof or securely streamed in real-time to
remote compatible APIs such as Grafana Pyroscope or our alternative Gigapipe.

INSTALL pyroscope FROM community;

LOAD pyroscope;

-- Run some heavy query and receive pprof continuous profiling

SELECT * FROM trace_start('https://user:token@profiles-prod-xxx.grafana.net');

Pyroscope PPROF Extension
Real-time continuous profiling of DuckDB Executions

Versions: 1.3 1.4

https://query.farm

🚜 Query.Farm - https://query.farm

DuckDB 1.4 Support 👐
👐 DuckDB 1.4

The latest LTS release is out and weʼre getting
ready to support it across all of our extensions!

Weʼre also proud to see the Progress Bar ETA
being featured under the spotlight for this
release and we hope youʼll enjoy using it!

https://query.farm

🚜 Query.Farm - https://query.farm

Query.Farm is working on its own platform based on DuckDB, Apache Arrow and FlightSQL - designed for
heavyweight real-time data & time series, delivering ETL, serverless queries and scalability

Query.Farm Engine Features 🌾
● Flight Airport powered
● DuckLake/Iceberg/Delta storage
● Arrow + Parquet Storage
● Real-Time Ingestion
● Extensible Schemas
● Encryption / Row/Column ACLs
● Progressive Compaction
● Extensible Storage Tiers
● Serverless, Infinite Scalability
● Native Agentic support

COMING SOON: Query.Farm Data Platform ✈
DuckDB  Airport powered serverless data platform for On-Prem and Cloud

https://query.farm

🚜 Query.Farm - https://query.farm

Join Us / Build Upon Query.Farm Extensions 👐
 👐 Open Source

● Extensions are MIT/Apache2 licensed
● Free to use, inspect and build upon

 💡 Share Your Ideas

● Have a new feature or extension idea?
Weʼd love to hear it!

● We are on the DuckDB Discord
● Join our mailing list and ask away

 🤝 Contribute & Collaborate

● Submit pull requests, suggest improvements,
or co-develop extensions

● Help us make DuckDB even more powerful for
everyone

 🌱 Support for Extension Developers

● We actively support other developers building
DuckDB extensions

● Guidance, best practices and collaboration to
bring your ideas to life

https://query.farm

🚜 Query.Farm - https://query.farm

🚜 Query.Farm
The place where DuckDB
Community Extensions Grow

https://query.farm

https://query.farm
https://query.farm

