
Building a Postgres Data

Warehouse

using DuckDB

Marco Slot – marco.slot@crunchydata.com

About me

201920142009 2024

MSc PhD Acquisition

Past Project: Citus

Citus is a PostgreSQL extension that can distribute tables across a cluster of
PostgreSQL servers.

GitHub: https://github.com/citusdata/citus

“Citus: Distributed PostgreSQL for Data-Intensive Applications” (SIGMOD ‘21)

items
users

items
users

Schema changes
Queries (reads & writes) Queries (reads & writes) Queries (reads & writes)

items
users

coordinator worker 1 worker 2

Multi-tenant apps

Real-time analytics

https://github.com/citusdata/citus

OLTP OLAP

Operational system of record

SQL

Transactions

High query rate, small queries

Low response time

User-facing applications

Mission-critical, always on

Analytics on collection of data sources

SQL

Transactions

Low query rate, big queries

High scan throughput

Business-facing dashboards

On demand, business hours

Row-oriented vs Column-oriented

Row-oriented storage & execution Column-oriented storage & execution

SELECT * FROM orders
WHERE orderid = $1

SELECT productid, count(*) FROM orders
GROUP BY 1 ORDER BY 2 DESC LIMIT 10

At scale: Fast on OLTP, Slow on OLAP At scale: Slow on OLTP, Fast on OLAP

PostgreSQL

Hybrid OLTP/OLAP architecture

DuckDB

SQL

Extensions

Why Hybrid OLTP/OLAP architecture?

Bad idea:

• Run analytical queries on operational system of record

Good ideas:

• Speed up “accidental Postgres data warehouse”

• Fast insert queues for analytics tables

• Build and query materialized views in same system

• Bookkeeping for file import/export

• …

Stack simplification!

Modern Data Stack

Modern Data Stack Post-Modern Data Stack

PostgreSQL

DuckDB

PostgreSQL

PostgreSQL

DuckDB
DuckDB

Crunchy Data Warehouse

Managed PostgreSQL with Iceberg and data lake tables, 10-100x faster for analytics
by integrating DuckDB and write-through file caching.

Constellation of Postgres Extensions

Add new Postgres user experiences through many small, composable extensions.

Querying data lakes

Adjust DDL and SQL behavior to query files in data lakes.

create foreign table events ()
server crunchy_lake_analytics
options (
path 's3://mybucket/events/*.csv');

select date_bin(…), count(*)
from events
where event_time > now() – interval '7 days'
group by 1;

copy (…) to 's3://mybucket/res.parquet';

DESCRIBE FROM 's3://…’;
Generate composite types if needed

SELECT time_bucket(…), count(*)
FROM read_csv('s3://…')
WHERE event_time > '2025-02-13 …'
GROUP BY 1;

COPY …

Extending the Postgres query planner

Extensions can propose or enforce alternative plans for whole query or fragments.

Whole query

ORDER BY

DISTINCT

Window functions

Grouping & aggregation

Joins

Scan

with top10 as (
select cust_id, sum(…)
from sales
where …
order by 2 desc limit 10

)
select pg_func(cust_id)
from top10;

CteScan
pg_func(cust_id)

CustomScan (DuckDB)

select …
from read_parquet(…)
where …
order by …

Storing data for analytics: Apache Iceberg

Iceberg defines a way to store a table in object
storage

with support for schema changes, transactions, ….

Iceberg ingredients:

• Parquet (columnar) data files

• Parquet deletion files

• Tree of metadata files on which Parquet files are
part of the table

• Catalog to find top-level metadata file

Storing data for analytics: Apache Iceberg

Capture queries, writes, & schema changes to provide a transactional table experience, backed
by Iceberg in S3.

create table chats (
message_id bigserial not null,
thread_id bigint not null,
…

) using iceberg;

…
update chats set answer = '42'
where question is null;

select count(*) from chats;

Write metadata (avro, json) files to S3, insert to catalog

SELECT * FROM read_parquet(…, filename=…, file_row_number=…)
WHERE question IS NULL;

Write updated rows into new Parquet file.
Write deleted rows into position delete Parquet file.

Write metadata (avro, json) files to S3, update catalog

SELECT count(*)
FROM read_parquet(…, schema=…, filename=…, file_row_number=…))
WHERE (filename, file_row_number)
NOT IN (SELECT (file_path, pos) FROM read_parquet(…));

DuckDB experiences

Great:

Performance

read_parquet/json/csv

Wildcards

Near Postgres compatibility

Extensibility

Concurrency

Bugs get fixed

Could be better:

Memory management for complex queries

Parsing and escaping of nested types

Parquet pruning

Azure/GCP/S3 feature support

Query interrupts

Summary

PostgreSQL with state-of-the-art analytics is possible by integrating DuckDB and
Iceberg. Can significantly simplify data stacks.

Crunchy Data Warehouse is the first production-ready solution.

Let’s see how it goes ☺

Others under development: pg_analytics, pg_duckdb, pg_mooncake

Questions?

Or drinks…

	Default Section
	Slide 1
	Slide 2: About me
	Slide 3: Past Project: Citus
	Slide 4: OLTP OLAP
	Slide 5: Row-oriented vs Column-oriented
	Slide 6: Hybrid OLTP/OLAP architecture
	Slide 7: Why Hybrid OLTP/OLAP architecture?
	Slide 8: Modern Data Stack
	Slide 9: Crunchy Data Warehouse
	Slide 10: Constellation of Postgres Extensions
	Slide 11: Querying data lakes
	Slide 12: Extending the Postgres query planner
	Slide 14: Storing data for analytics: Apache Iceberg
	Slide 15: Storing data for analytics: Apache Iceberg
	Slide 16
	Slide 17: DuckDB experiences
	Slide 18: Summary
	Slide 19: Questions?

