
Frank Mbonu, Diederik Greveling

Ducklake
A journey to integrate DuckDB with Unity
Catalog

Big data is dead?

2

Source: https://motherduck.com/blog/big-data-is-dead/

in-process analytical database designed for fast query execution, especially suited for analytics workloads.

Big data is dead?

3

Source: https://motherduck.com/blog/big-data-is-dead/

Key takeaways

• Most Organizations Don’t Have "Big Data”
• “The majority of companies, even large enterprises,

typically have data warehouses smaller than a

terabyte”

• Workloads Are Smaller Than Data Sizes
• “Most analytical queries process only a small fraction of the

total data stored. For example, 90% of BigQuery queries
process less than 100 MB of data”

• The Big Data Frontier is Shrinking
• “As hardware improves, fewer workloads require distributed

systems. A single machine today can handle what required

thousands of nodes a decade ago”

For whom is this interesting?

4

Distributed compute (e.g.

Spark) makes a lot of

sense for large datasets.

But for smaller ones (<
1Tb) it might not be the

best fit

Introducing Ducklake

in-process analytical database designed for fast query execution, especially suited for
analytics workloads.

5

Unity Catalog centralized governance, features like access controls and data lineage. Open source since
the summer of 2024.

Ducklake: Let’s combine DuckDB with the Unity Catalog through the DuckDB Unity
Catalog extension

+

=

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdocs.unitycatalog.io%2F&psig=AOvVaw3KpJEH2mSHwJnMLmT7SjUI&ust=1731061166477000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCICP6sD_yYkDFQAAAAAdAAAAABAE

Ducklake high-level design

6

Requirements:
• Access Control

• Support for ACID transactions

• To ensure data is complete, correct, conflict-free

• Read-write integration with an open data format

• Notebook interface for interactive development

• Storage decoupled from compute

• Full dbt integration

Challenges encountered

Lack of full native compatibility

• The DuckDB delta extension depends on the

delta-kernel-rs*, which currently only supports

reads (and blind appends)

• The DuckDB unity extension currently does not

support all CRUD operations (e.g. table create,

schema create)

*The Delta Kernel (Java or Rust (C and C++ bindings)) is a set of libraries that provides high-
level APIs for interacting with Delta Lake tables designed to make Delta Lake integration easier
and more efficient.

*DuckDB is written in C++ hence the delta-kernel-rs is used for building the delta connector

The workaround

Creating our own dbt-duckdb* plugin

• Delta-rs

o Writing the result in-memory arrow table to a

delta table

• UC SDK

o Create schemas

o Create tables

o Get temporary storage credentials (AWS)

*dbt-duckdb is a dbt adapter for DuckDB

A dbt build will

1. Compile our dbt models into executable SQL
2. Execute the compiled code against DuckDB

3. Convert the query results to a PyArrow table
4. Create the unity schema if it doesn't exist

5. Create the unity table if it doesn't exist
6. Write the PyArrow table to a Delta table

Ducklake in action

9

Now that we have created an integrated

setup with DuckDB and Unity Catalog

Let’s put our Ducklake to test...

First, we need some data to work with.

Since we’re using dbt in our setup, the

jaffle shop seems appropriate to use.

The Jaffle shop is a fictional e-commerce store often used for dbt demos. It

transforms raw csv data into customer and order models.

In our example the gold models are materialized as tables in Unity Catalog

Ducklake in action

10

First, let’s populate our unity catalog with the jaffle shop materialized tables using dbt build

This will

1. Compile our dbt models into executable
SQL

2. Execute the compiled code against DuckDB
3. Convert the query results to a PyArrow table

4. Create the unity schema if it doesn't exist
5. Create the unity table if it doesn't exist
6. Write the PyArrow table to a Delta table

Ducklake in action

11

Now that our Unity Catalog is populated, let’s try to query our materialized tables

ATTACH our Unity Catalog to DuckDB so that we can read/write from/to UC tables

DuckLake works—no quacks, just results

https://emojipedia.org/duck

Next steps

• Implement RBAC (UC v0.2.0)

• Support schema evolution

• Deploy Ducklake in the cloud (AWS)

• Improve UI

• Make Ducklake pluggable

o Choose your engine
o Choose your catalog

• Write more blogs about our journey

Read our blog post if you haven't already!

13

xebia.com

	Slide 1: Ducklake
	Slide 2: Big data is dead?
	Slide 3: Big data is dead?
	Slide 4: For whom is this interesting?
	Slide 5: Introducing Ducklake
	Slide 6: Ducklake high-level design
	Slide 7: Challenges encountered
	Slide 8: The workaround
	Slide 9: Ducklake in action
	Slide 10: Ducklake in action
	Slide 11: Ducklake in action
	Slide 12: Next steps
	Slide 13: Read our blog post if you haven't already!
	Slide 14

