(_

Ducklake

A journey to integrate DuckDB with Unity
Catalog

Frank Mbonu, Diederik Greveling

G

5", Unity

. .“ Catalog

Big data is dead?

A Source: https://motherduck.com/blog/big-data-is-dead/

a9
a0

Percentile

>

100MB 10 6B
Query Workload Data Size (L033

o in-process analytical database designed for fast query execution, especially suited for analytics workloads.
DuckDB

Big data is dead?

Source: https://motherduck.com/blog/big-data-is-dead/

Key takeaways

* Most Organizations Don’t Have "Big Data”
* “The majority of companies, even large enterprises,
typically have data warehouses smaller than a
terabyte”

» Workloads Are Smaller Than Data Sizes
* “Most analytical queries process only a small fraction of the
total data stored. For example, 90% of BigQuery queries
process less than 100 MB of data”

« The Big Data Frontier is Shrinking
* “As hardware improves, fewer workloads require distributed
systems. A single machine today can handle what required
thousands of nodes a decade ago”

For whom is this interesting?

INERE.

Azure Data Platform

Analytics Workbench

o4

Azure Synapse Data Engineering

X dbt

Data Lake / Data W= _.iouse

o< snowflake

databricks

Business Intelligence

@ Transforma PowerB

i+
Airbyte x dbt E < +t¥
E Tableau

DataQualityand GODA- ¥ Datafold m j DataHut
v Observability DA~ ¥ L
I Orchestration . M x dbt ~;’x rflow
Cloud Foundation
Monitoring cvco Identity Management natio

Distributed compute (e.g.
Spark) makes a lot of
sense for large datasets.

But for smaller ones (<
1Tb) it might not be the
best fit

Introducing Ducklake

Q in-process analytical database designed for fast query execution, especially suited for
DuckDB analytics workloads.

+

e Unity centralized governance, features like access controls and data lineage. Open source since
.+ Catalog the summer of 2024.

Ducklake: Let's combine DuckDB with the Unity Catalog through the DuckDB Unity
Catalog extension

https://www.google.com/url?sa=i&url=https%3A%2F%2Fdocs.unitycatalog.io%2F&psig=AOvVaw3KpJEH2mSHwJnMLmT7SjUI&ust=1731061166477000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCICP6sD_yYkDFQAAAAAdAAAAABAE

Ducklake high-level design

Requirements:

Access Control
Support for ACID transactions

« To ensure data is complete, correct, conflict-free
Read-write integration with an open data format
Notebook interface for interactive development
Storage decoupled from compute
Full dbt integration

/- Source Data (Data Ca‘talog DuckDB dbt \’\
2 “*. Unity dbt-duckdb x
DELTA LAKE
_ —J

Jupy‘ter

R

d“P'fte-'"]

Challenges encountered

Lack of full native compatibility Desired native integration
(Uni'tl, ca'talog \

duckdb-unity extension
* 0. Unity
'.‘o' Catalog J

Del'ta table

duckdb-delta extension DELTA LAKE]

. /

« The DuckDB delta extension depends on the
delta-kernel-rs*, which currently only supports
reads (and blind appends)

* The DuckDB unity extension currently does not
support all CRUD operations (e.g. table create,
schema create)

DuckDB query

Ml 0de®®

*The Delta Kernel (Java or Rust (C and C++ bindings)) is a set of libraries that provides high-
level APIs for interacting with Delta Lake tables designed to make Delta Lake integration easier
and more efficient.

*DuckDB is written in C++ hence the delta-kernel-rs is used for building the delta connector

The workaround

Creating our own dbt-duckdb* plugin

,@ Delta-rs
o Writing the result in-memory arrow table to a
delta table
n UC SDK
o Create schemas
o Create tables
o Gettemporary storage credentials (AWS)

*dbt-duckdb is a dbt adapter for DuckDB

Unity Plugin Workaround

UC python SDK Unity Catalog

Query Results Arrow Table % A ggltta){og
ne

[0 H ARROW>>>j Delta Taue

delta-rs [DEéKE]

(PL/tL\on B?no{ings)

J

Adbt build will

Compile our dbt models into executable SQL
Execute the compiled code against DuckDB
Convert the query results to a PyArrow table
Create the unity schema if it doesn't exist
Create the unity table if it doesn't exist

Write the PyArrow table to a Delta table

o0, w®NE

Ducklake in action

The Jaffle shop is a fictional e-commerce store often used for dbt demos. It

Now that we have created an integrated _
transforms raw csv data into customer and order models.

setup with DuckDB and Unity Catalog

Let's put our Ducklake to test... In our example the gold models are materialized as tables in Unity Catalog

Since we’re using dbt in our setup, the id 2 integer id &2 integer id 2 integer
jaffle shop seems appropriate to use. first_name varchar 1 user_id integer 1 order_id integer
last_name varchar order_date date payment_method varchar

status varchar amount integer

raw_customers Stg_customer: J
raw_orders stq orders
raw_payments stg_payments

Ducklake in action

First, let’s populate our unity catalog with the jaffle shop materialized tables using dbt build

: File Edit View Run Kernel Tabs Settings Help

= - B + I} " uc_dbt.ipynb ® A uc_duckdb.ipynb X | [@ Launcher X | E requirements.txt X |+
B+ X DO » = C » Code v ~Openin.. % Python 3 (ipykernel) O =
o lF\\terhlesbyname Q |
B / notebooks [%cd ../dbt/jaffle_shop
.— Name - Modified /home/ducklake/dbt/jaffle_shop
@ bootstrap_duck... 3h ago I [2]: !dbt build ® 1 & 9 8
g D) requirements.ixt 3h ago 13:38:38 Running with dbt=1.8.6
2 13:38:38 Registered adapter: duckdb=0.0.1-dev867
g uc_duckdb.ipynb 1m ago 13:38:38 Unable to do partial parsing because saved manifest not found. Starting full parse.
(&) 13:38:40 Found 5 models, 3 seeds, 417 macros
13:38:40
13:38:41 Concurrency: 1 threads (target='dev')
» 13:38:41
13:38:41 1 of 8 START seed file main.raw_customers [RUN]
13:38:41 1 of 8 OK loaded seed file main.raw_customers . . « [INSERT 106 in @.13s]
13:38:41 2 of 8 START seed file main.raw_orders ... [RUN]
13:38:41 2 of 8 OK loaded seed file main.raw_orders . [INSERT 99 in ©.@3s]
13:38:41 3 of 8 START seed file main.raw_payments ... [RUN]
13:38:41 3 of 8 OK loaded seed file main.raw_payments .. [INSERT 113 in @.02s]
13:38:41 4 of 8 START sql view model main_staging.stg_customers .. . + [RUN]
13:38:41 4 of 8 OK created sql view model main_staging.stg_customers [0K in @.@7s]
13:38:41 5 of 8 START sql view model main_staging.stg_orders [RUN]
13:38:41 5 of 8 OK created sql view model main_staging.stg_orders [0K in @.025]
13:38:41 6 of 8 START sql view model main_staging.stg_payments ... [RUN]
13:38:41 6 of 8 OK created sql view model main_staging.stg_payments » [0K in 9.97s]
13:38:41 7 of 8 START sql external_table model main_intermediate.customers . [RUN]
13:38:42 7 of 8 OK created sql external_table model main_intermediate.customers . [0K in 8.87s]
13:38:42 8 of 8 START sql external_table model main_intermediate.orders [RUN]
13:38:42 8 of 8 OK created sql external_table model main_intermediate.orders . [0K in @.14s]
13:38:42
13:38:42 Finished running 3 seeds, 3 view models, 2 external table models in @ hours @ minutes and 2.64 seconds (2.64s).
13:38:42
13:38:42 Completed successfully
13:38:42
13:38:42 Done, PASS=8 WARN=@ ERROR=@ SKIP=@ TOTAL=8
g Simple 0 M 3 @ Python 3 (ipykernel) | Idle Mode: Command & Ln1,Col1 uc_dbtipynb 0 ﬂ pl

This will

=

OUTA WN

Compile our dbt models into executable
SQL

Execute the compiled code against DuckDB
Convert the query results to a PyArrow table
Create the unity schema if it doesn't exist
Create the unity table if it doesn't exist

Write the PyArrow table to a Delta table

10

Ducklake in action

Now that our Unity Catalog is populated, let’s try to query our materialized tables

: File Edit View Run Kernel Tabs Settings Help

Catalogs —~ -
v [m] duckdb.ipynb X |+
B > Funity ~ P¥! e
« B default 8 + X O [» m C » Code v - Openin... Dunky O =
o > & intermediate -

> B customers ATTACH ‘unity' AS unity (TYPE UC_CATALOG); <4——— ATTACH our Unity Catalog to DuckDB so that we can read/write from/to UC tables

123 customer_id Database 'unity' attached successfully.

abc first_name
SHOW ALL TABLES;
abc last_name

column_types temporary

% [first_order database schema name column_names
(=]
:) most_recent_order unity default marksheet [id 'name’ 'marks'] [INTEGER' 'VARCHAR' 'INTEGER'] False
o 123 number_of_orders
" lifeti | unity default marksheet_uniform ['id' 'name' 'marks'] ['INTEGER' 'VARCHAR' 'INTEGER'] False
123 customer_litetime_value
* &3 orders unity default numbers ['as_int' 'as_double'] ['INTEGER' 'DOUBLE'] False
. . . ['customer_id' 'first_name' 'last_name' ‘first_order' 'most_recent_order' ['INTEGER' 'VARCHAR' 'VARCHAR' 'DATE' 'DATE' 'BIGINT'
P unity intermediate CRSlOmers 'number_of_orders' 'customer_lifetime_value'] 'DOUBLE'] False
unity intermediate orders [‘order_id' 'customer_id' 'order_date' 'status' 'credit_card_amount' 'coupon_amount' ['INTEGER' 'INTEGER' 'DATE' 'VARCHAR' 'DOUBLE' False
> Y 'bank_transfer_amount' 'gift_card_amount' 'amount'] 'DOUBLE' 'DOUBLE' 'DOUBLE' 'DOUBLE']

SELECT * FROM unity.intermediate.customers LIMIT 10;

customer_id first_name last_name first_order most_recent_order number_of_orders customer_lifetime_value
1 Michael P. 2018-01-0100:00:00 2018-02-10 00:00:00 2 33
2 Shawn M. 2018-01-11 00:00:00 2018-01-11 00:00:00 1 23
3 Kathleen P. 2018-01-02 00:00:00 2018-03-1100:00:00 3 65
6 Sarah R. 2018-02-19 00:00:00 2018-02-19 00:00:00 1 8
7 Martin M. 2018-01-14 00:00:00 2018-01-14 00:00:00 1 26
8 Frank R. 2018-01-29 00:00:00 2018-03-12 00:00:00 2 45
9 Jennifer F. 2018-03-17 00:00:00 2018-03-17 00:00:00 1 30
1" Fred S. 2018-03-23 00:00:00 2018-03-23 00:00:00 1 3
12 Amy D. 2018-03-03 00:00:00 2018-03-03 00:00:00 1 4
13 Kathleen M. 2018-03-07 00:00:00 2018-03-07 00:00:00 1 26

DuckLake works—no quacks, just results &

11

https://emojipedia.org/duck

Next steps

(&) Implement RBAC (UC v0.2.0)
Support schema evolution
& Deploy Ducklake in the cloud (AWS)
%> Improve Ul
¥ Make Ducklake pluggable

o Choose your engine

o Choose your catalog
&5 Write more blogs about our journey

Read our blog post if you haven't already! \.

Ne= h‘f\ml e

o' Unity
A Catalog

AN RN AN N RGNty 91 1

xebia.com

	Slide 1: Ducklake
	Slide 2: Big data is dead?
	Slide 3: Big data is dead?
	Slide 4: For whom is this interesting?
	Slide 5: Introducing Ducklake
	Slide 6: Ducklake high-level design
	Slide 7: Challenges encountered
	Slide 8: The workaround
	Slide 9: Ducklake in action
	Slide 10: Ducklake in action
	Slide 11: Ducklake in action
	Slide 12: Next steps
	Slide 13: Read our blog post if you haven't already!
	Slide 14

