
Rusty Conover - rusty@conover.me - DuckCon #6, Amsterdam, 2025-01-31

Airport for DuckDB:
Letting DuckDB take Apache Arrow Flights

mailto:rusty@conover.me

DuckDB Extensions I’ve created

• Crypto - Cryptographic hash functions

• Datasketches - Probabilistic data structures

• Evalexpr_rhai - Embedded scripting language

• Fuzzycomplete - Alternative autocompletion in CLI

• Lindel - Linearization (Morton/Hilbert curves)

• Shellfs - Subprocess I/O

Imagine a world where…

DuckDB makes tabular data access
effortless and universal.

Any data, anywhere, on all systems.

All via SQL.

What is the Airport Extension?
An explanation by analogy.

Airports let you go to far away places

Flying is quick and efficient

You can bring things back

You can leave things there

What is the Airport Extension?
An explanation by analogy.

Airports let you go to far away places Remote Servers and Systems

Flying is quick and efficient Uses Apache Arrow Flight

You can bring things back SELECT statements

You can leave things there INSERT, UPDATE, DELETE…

Where can I fly to?
Anywhere sunny and somewhat tabular.

• “Lakehouse” Formats - Iceberg, Delta
Lake, Vortex, Hudi, LanceDB, Nimble

• NoSQL - Redis, DynamoDB, MongoDB,
Cassandra, AirTable

• Graph Databases - Kuzu, Neptune, Neo4j

• ⭐DuckDB instances⭐ on other
machines

• Spark - Spark Connect

• DataBricks - Delta Sharing

• REST APIs: Stripe, Shopify, Github

• Event Busses and Queues: Kafka,
WarpStream, SQS, RabbitMQ

• Old School Databases: LDAP, DNS,
LMDB

• Other SQL Servers: SQL Server, Oracle,
SQLite, Limbo

• Cloud Management: AWS, Google Cloud

• Management Services: Kubernetes,
SNMP, Routing Tables

• Legacy Systems: Of course

How does Arrow Flight Work

DuckDB Arrow
Flight Server

Actual
Data Source

Optionally

Why did I create the Airport extension
Benefits

• Less code for new “extensions”.

• Leverage programming language ecosystems (PyPi, Crates)

• Runs outside of DuckDB

• Complexity contained, Responsibility is clear, No crashes

• Access distributed hardware and resources

• Simplifies the build, test, distribute loop

• Can offer data-as-a-service and function-as-a-service

Ready for some demos?

Delta Lake with Write Support

AutoGluon: Machine Learning with only SQL

Maybe: Geocoding and Weather

Delta Lake With Write Support

ATTACH 'deltalake' (
 TYPE AIRPORT,
 location ‘grpc://localhost:50312/'
);
CREATE SCHEMA deltalake.test1;
CREATE TABLE deltalake.test1.people (
 name VARCHAR,
 love_of_duckdb INT,
 tags VARCHAR[]
);

Delta Lake With Write Support

INSERT INTO deltalake.test1.people values
('rusty', 5, ['airport', 'datasketches']),
('sam', 10, ['deltalake', ‘iceberg']);

SELECT * FROM deltalake.test1.people;
 name = rusty
love_of_duckdb = 5
 tags = [airport, datasketches]

 name = sam
love_of_duckdb = 10
 tags = [deltalake, iceberg]

Delta Lake With Write Support

$ ls -lR
total 8
drwxr-xr-x 4 rusty staff 128 Jan 30 23:13 _delta_log
-rw-r--r-- 1 rusty staff 1225 Jan 30 23:13 part-00001-82e3eb4e-
b4e1-4344-ad1d-4c9183c918e8-c000.snappy.parquet

./_delta_log:
total 16
-rw-r--r-- 1 rusty staff 1586 Jan 30 23:12 00000000000000000000.json
-rw-r--r-- 1 rusty staff 737 Jan 30 23:13 00000000000000000001.json

Yes this could be S3, Azure, GCS, R2…

Delta Lake With Write Support
How it works

DuckDB
Arrow

Flight Server

Python delta-rs DuckDB
Catalog

Integration

Run jobs
outside of
DataBricks

Compaction /
Partitions

Unity
Catalog

Integration

Row Change
TrackingTime Travel

Predicate
Pushdown

In the interest of time, I’m skipping over:

dbt

⏰

How does Arrow Flight Work

DuckDB Arrow
Flight Server

• Can be written in Java, Python, Rust, C#, C++

• Runs out of process with DuckDB, no need to
relink/rebuild/distribute dependencies.

• ⏰ Skipping details due to time.

Pr
oc

es
s

Bo
un

da
ry

AutoGluon
“Fast and Accurate ML in 3 Lines of Code”

• Build a ML Model with A Few SELECT Statements.

• Tabular Prediction

• Binary/Multiclass Classification, Regression, Quantile Prediction

• Time Series Prediction

• No need to get into a Python notebook

Hacker News Votes Prediction
ATTACH 'autogluon' (TYPE AIRPORT, location
‘grpc://localhost:50312/');

CREATE SCHEMA autogluon.p1;

CREATE TABLE
autogluon.p1.hn_stories as
SELECT
 title,

to_timestamp(time) as post_time,
score::float as score

FROM ‘hacker-news-stories.parquet’;

grpc://localhost:50312/'

Hacker News Votes Prediction

SELECT * FROM
autogluon.p1.predictor_fit(
‘hn_votes’, — model name
‘hn_stories’, - training data
‘score’, - target column
problem_type=‘regression’,
time_limit=200,
presets=‘high_quality’)

Create the model, “fit the predictor”…

Hacker News Votes Prediction

CREATE TABLE example_headlines (title text);

INSERT INTO example_headlines values
('DuckDB 1.2.0'),
('Iceberg versus Delta Lake, tales from the
format war'),
('SQL tips and tricks'),
('AI will replace all CS graduates'),
('Spaces are better than tabs, prove me wrong');

Create some example data for the model to use.

Hacker News Votes Prediction

SELECT title, prediction
FROM
autogluon.p1.predictor_predict_rows(
‘hn_votes’, — model name
(SELECT title, — model input
now() as post_time
FROM example_headlines));

Calling the model to make predictions

Hacker News Votes Prediction

 title = DuckDB 1.2.0
prediction = 34.16758

 title = Iceberg versus Delta Lake, tales from the format war
prediction = 25.366014

 title = SQL tips and tricks
prediction = 16.140633

 title = AI will replace all CS graduates
prediction = 13.036682

 title = Spaces are better than tabs, prove me wrong
prediction = 38.696304

Prediction Results

Hacker News Votes Prediction

SELECT * FROM
 autogluon.p1.predictor_predict_rows('hn_votes',
 (SELECT

 'Airport Extension for DuckDB using Arrow Flight' as
title,

 now() as post_time
));

 title = Airport Extension for DuckDB using Arrow Flight
 post_time = 2025-01-31 08:06:40.764+00
prediction = 12.30423

Testing HN post titles

Geocoding and Weather (Bonus Content)
ATTACH ‘geocoder' (
 TYPE AIRPORT, location ‘grpc://localhost:50212/'
);

SELECT geocoder.usa.geocode_address(
 '1600 Pennsylvania Ave, Washington, DC'
) as result;

result = {
 'latitude': 38.879389288728,
 'longitude': -76.982767739978
}

Geocoding and Weather
SELECT address,
unnest(
 geocoder.weather.current(
 geocoder.usa.geocode_address(address)
)
) FROM places;

 address = 1023 Lenox Ave, Miami Beach, FL 33139
 timestamp = 2025-01-31 01:30:00
 temperature = 21.1
 wind_speed = 20.8
wind_direction = 118
 conditions = Mainly clear

Distributed Scalar UDFs
{
 "flight_name": "geocoder/usa/uppercase",
 "comment": "upper case a string",
 "input_schema": pa.schema(
 [
 pa.field("input", pa.string()),
]
),
 # Scalar UDFs have a single field
 "output_schema": pa.schema([
 pa.field("result", pa.string())
]),
 "process": uppercase_string,
},

Distributed Scalar UDFs
def uppercase_string(input: pa.Table) -> list[dict[str, Any]]:
 return [

{"result": row["input"].upper()}
for row in input.to_pylist()

]

SELECT geocoder.usa.uppercase('hello ' || range) as r
from ids limit 3;
 r = HELLO 0
 r = HELLO 1
 r = HELLO 2

What Airport Can Do?
Feature List

Basics airport_list_flights()
airport_take_flights()

Catalog Integration,
Schemas and Tables

ATTACH, CREATE SCHEMA, CREATE TABLE
INSERT, UPDATE, DELETE, SELECT

Scalar User Defined
Functions SELECT function(value) from source;

Table In/Out Functions SELECT * from airport_function(‘Name’,
(SELECT * from source));

Authentication / Secrets
Manager CREATE SECRET

When will this be ready?
Ship it!

• Will be a community extension. Needs DuckDB >=1.2

• MIT Licensed on GitHub.

• https://github.com/Query-Farm/duckdb-airport-extension

• Please ⭐ the repo.

• Send me your questions: rusty@conover.me, follow me on LinkedIn for updates.

• Join the DuckDB Discord

• What is “Query Farm”?  
A forthcoming collection of Airport Flight Servers for data sources.

https://github.com/Query-Farm/duckdb-airport-extension
mailto:rusty@conover.me

Questions and hopefully, answers
Submit your questions here:

https://app.sli.do/event/tiAGnGKijPD64BgSxHxv2U

https://app.sli.do/event/tiAGnGKijPD64BgSxHxv2U

