
Unlocking graph analytics in DuckDB with SQL/PGQ

Daniël ten Wolde
Ph.D. student
CWI Database Architectures group

Storing graphs in SQL
CREATE TABLE city (
 id bigint PRIMARY KEY,
 name varchar
);

CREATE TABLE person (
 id bigint PRIMARY KEY,
 name varchar
);
CREATE TABLE livesIn (
 personid bigint,
 cityid bigint
);

CREATE TABLE follows (
 p1id bigint,
 p2id bigint
);

:person
name: Bob

:person
name: Chloe

:person
name: Jack

:person
name: Emily

:city
name: Utrecht

follows

livesIn

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN livesIn l on p2.id = l.personid
JOIN city c ON c.id = l.cityid AND c.name = 'Utrecht';

SQL:1999 query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN livesIn l on p2.id = l.personid
JOIN city c ON c.id = l.cityid AND c.name = 'Utrecht';

SQL:1999 query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode, array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN livesIn l on p2.id = l.personid
JOIN city c ON c.id = l.cityid AND c.name = 'Utrecht';

SQL:1999 query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SQL/PGQ (Property Graph Queries)
● Part of SQL:2023 standard
● Property graph layer over existing tables
● Visual graph syntax

○ Pattern matching
○ Path-finding

SQL/PGQ property graph creation
CREATE PROPERTY GRAPH SocialNetwork
 VERTEX TABLES (

person, city
)
 EDGE TABLES (

follows SOURCE KEY (p1id) REFERENCES person (id)
 DESTINATION KEY (p2id) REFERENCES person (id),

livesIn SOURCE KEY (personid) REFERENCES person (id)
DESTINATION KEY (cityid) REFERENCES city (id)

);

SELECT count(id)
FROM
 GRAPH_TABLE (SocialNetwork
 MATCH p = ANY SHORTEST (p1:person WHERE p1.name='Bob')

-[f:follows]->*(p2:person)
 -[l:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id));

SQL/PGQ query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SELECT count(id)
FROM
 GRAPH_TABLE (SocialNetwork
 MATCH p = ANY SHORTEST (p1:person WHERE p1.name='Bob')

-[f:follows]->*(p2:person)
 -[l:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id));

SQL/PGQ query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SELECT count(id)
FROM
 GRAPH_TABLE (SocialNetwork
 MATCH p = ANY SHORTEST (p1:person WHERE p1.name='Bob')

-[f:follows]->*(p2:person)
 -[l:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id));

SQL/PGQ query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SELECT count(id)
FROM
 GRAPH_TABLE (SocialNetwork
 MATCH p = ANY SHORTEST (p1:person WHERE p1.name='Bob')

-[f:follows]->*(p2:person)
 -[l:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id));

SQL/PGQ query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SELECT count(id)
FROM
 GRAPH_TABLE (SocialNetwork
 MATCH p = ANY SHORTEST (p1:person WHERE p1.name='Bob')

-[f:follows]->*(p2:person)
 -[l:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id));

SQL/PGQ query

Prompt: Count the number of people Bob
(in)directly follows who live in the city Utrecht

SQL/
PGQ

plain
SQL

The SQL/PGQ query is 4× shorter & more readable

SELECT count(id) AS cp2
FROM GRAPH_TABLE (socialNetwork
 MATCH p = ANY SHORTEST (p1:person WHERE p1.name='Bob')-[:follows]->*(p2:person)
 -[:livesIn]->(c:city WHERE c.name='Utrecht')
 COLUMNS (p2.id));

WITH RECURSIVE paths(startNode, endNode, path) AS (
 SELECT p1id AS startNode, p2id AS endNode, ARRAY[p1id, p2id] AS path
 FROM follows JOIN person p1 ON p1.id = follows.p1id WHERE p1.name = 'Bob'
 UNION ALL (
 WITH paths AS (TABLE paths)
 SELECT paths.startNode AS startNode, p2id AS endNode,

array_append(path, p2id) AS path
 FROM paths JOIN follows ON paths.endNode = follows.p1id
 WHERE NOT EXISTS (SELECT true FROM paths previous_paths
 JOIN person p2 ON p2.id = follows.p2id
 WHERE p2.name = 'Bob' OR follows.p2id = previous_paths.endNode)))
SELECT count(p2.id) AS cp2
FROM person p1
JOIN paths ON paths.startNode = p1.id
JOIN person p2 ON p2.id = paths.endNode
JOIN livesIn l on p2.id = l.personid
JOIN city c ON c.id = l.cityid AND c.name = 'Utrecht';

DuckPGQ extension
● Installable as a community extension

● Translated to standard relational query plans

● Special UDFs for path-finding

● Graph algorithms as table functions:

a. PageRank

b. Weakly Connected Component

c. Local Clustering Coefficient

Try DuckPGQ out in DuckDB
> duckdb
⚫◗ install duckpgq from community;
⚫◗ load duckpgq;

duckpgq.org

dtenwolde.bsky.social dljtw@cwi.nl

http://duckpgq.org

