
Double Glazing: Two Years  
of Windowing Improvements

Richard Wesley

15 August 2024DuckCon #5



• Functionality 

• DISTINCT, EXCLUDE, QUALIFY 

• Performance 
• Partition Fusion 
• Vectorisation 
• Streaming 

• Memory 
• One partition at a time 

TL;DL

Lightning on the Space Needle
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• Ordinary calculations  
• Produce a new attribute… 
• …from a single row 

• Only need the row 
• Trivial to stream 
• Trivial to parallelise

Single Row Calculations

Streamed Calculations

The Windowing Model

SELECT a + b AS c

a b c

1 1 2

5 -2 3

2 NULL NULL



• Windowing calculations 
• Produce a new attribute 
• From adjacent rows 

• What does adjacent mean? 
• Sets are unordered! 
• Need boundaries  
• Need ordering 
• Need distance

Multi-Row Calculations

Windowed Calculations

The Windowing Model

a b c

1 1 1

5 -2 -1

2 NULL -1

SELECT running_total(b) AS c



• PARTITION BY
• Independent blocks of rows 

• ORDER BY
• Sort the partitions 

• ROWS/RANGE BETWEEN  
• Distance from the current row

Visualising Windowing

The Windowing Model

The Windowing Model

Partition A

Partition B

Partition C

Frame Current Row

Order By
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• Streaming or materialised? 
• Depends on the functions 
• Split out streamable ones  

• Can we combine partitions? 
• Same partitioning keys 
• Ordering key prefixes 
• Cao et al. for general solution

Window Planning

Cao et al., Optimization of Analytic Window Functions, VLDB 2012Windows on a Blueprint

The Window Operators



• Can we stream evaluation? 

• No PARTITION or ORDER 

• No IGNORE NULLS 
• “Simple” non-aggregates 
• “Running total” aggregates 

• Recent functionality 

• FILTER and DISTINCT 

• LEAD and LAG (close by)

Streamed Windowing

Water streaming down a window

The Window Operators



• Hash chunks in Sink  
• Lies et al., VLDB 2015 
• Max of 1024 hash groups 

• Only hash the partition keys 
• Reduces sorting size 

• N * log (N/p)

• Hash collisions? 
• Multiple partitions per group 

Hash Grouping

Hash Partitioning by Thread

The Window Operators

Threads

Rows Hash

Hash Groups

Hash Rows



• Minimise memory footprint 
• One partition at a time 
• Use all threads 
• Size scheduling to largest 
• Smaller partitions can share 

• Do everything in parallel 
• Build acceleration structures 
• Compute result chunks

Source Implementation

Source Task Diagram

The Window Operators
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Figure 4: Physical Segment Tree representation with fanout 4 for sum(b) over (order by a)
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Figure 5: Segment Tree for sum aggregation. Only the red
nodes (7, 13, 20) have to be aggregated to compute the sum of
7, 3, 10, 6, 2, 8, 4

hash group, as shown in Figure 5. In the figure sum is used as
the aggregate, thus the root node stores the sum of all leaf nodes.
The two children of the root store the sums for two equi-width sub
ranges, and so on. The Segment Tree allows to compute the ag-
gregate over an arbitrary range in logarithmic time by using the
associativity of aggregates. For example, to compute the sum for
the last 7 values of the sequence, we need to compute the sum of
the red nodes 7, 13, and 20.

For illustration purposes, Figure 5 shows the Segment Tree as
a binary tree with pointers. In fact, our implementation stores all
nodes of each tree level in an array and without any pointers, as
shown in Figure 4. In this compact representation, which is similar
to that of a standard binary heap, the tree structure is implicit and
the child and parent of a node can be determined using arithmetic
operations. Furthermore, to save even more space, the lowest level
of the tree is the sorted input data itself, and we use a larger fanout
(4 in the figure). These optimizations make the additional space
consumption for the Segment Tree negligible. Additionally, the
higher fanout improves performance, as we show in an experiment
that is described in Section 5.7.

In order to compute an aggregate for a given range, the Seg-
ment Tree is traversed bottom up starting from both window frame

bounds. Both traversals are done simultaneously until the traversals
arrive at the same node. As a result, this procedure stops early for
small ranges and always aggregates the minimum number of nodes.
The details of the traversal algorithm can be found in Appendix C.

In addition to improving worst-case efficiency, another
important benefit of the Segment Tree is that it allows
to parallelize arbitrary aggregates, even for running sum
queries like sum(b) over (order by a rows between
unbounded preceding and current row). This is par-
ticularly important for queries without a partitioning clause, which
can only use intra-partition parallelism to avoid executing this
phase of the algorithm serially. The Segment Tree itself can eas-
ily be constructed in parallel and without any synchronization, in

a bottom-up fashion: All available threads scan adjacent ranges of
the same Segment Tree level (e.g., using a parallel for con-
struct) and store the computed aggregates into the level above it.

For aggregate functions like min, max, count, and sum, the
Segment Tree uses the obvious corresponding aggregate function.
For derived aggregate functions like avg or stddev, it is more ef-
ficient to store all needed values (e.g., the sum and the count) in the
same Segment Tree instead of having two such trees. Interestingly,
besides for computing aggregates, the Segment Tree is also use-
ful for parallelizing the dense rank function, which computes a
rank without gaps. To compute the dense rank of a particular
tuple, the number of distinct values that precede this tuple must be
known. A Segment Tree where each segment counts the number
of distinct child values is easy to construct4, and allows threads to
work in parallel on different ranges of the partition.

4.3.5 Algorithm Choice

Table 1 summarizes the worst-case complexities of the 4
algorithms. The naı̈ve algorithm results in quadratic run-
time for many common window function queries. The cu-
mulative algorithm works well as long as the window frame
only grows. Additionally, queries with frames like current
row and unbounded following or 1 preceding and
unbounded following can also be executed efficiently using
the cumulative algorithm by first reversing the sort order. The re-
movable algorithm further expands the set of queries that can be
executed efficiently, but requires an additional ordered tree struc-
ture for min and max aggregates and can still result in quadratic
runtime if the frame bounds are not constant.

Therefore, the analysis might suggest that the Segment Tree al-
gorithm should always be chosen, as it avoids quadratic runtime in
all cases. However, for many simple queries like rows between
1 preceding and current row, the simpler algorithms
perform better in practice because the Segment Tree can incur a
significant overhead both for constructing and traversing the tree
structure. Intuitively, the Segment Tree approach is only beneficial
if the frame frequently changes by a large amount in comparison
with the previous tuple’s frame. Unfortunately, in many cases, the
optimal algorithm cannot be chosen based on the query structure
alone, because the data distribution determines whether building
a Segment Tree will pay off. Furthermore, choosing the optimal
algorithm becomes even more difficult when one also considers
parallelism, because, as mentioned before, the Segment Tree al-
gorithm always scales well in the intra-partition parallelism case
whereas the other algorithms do not.

Fortunately, we have found that the majority of the overall query
time is spent in the partitioning and sorting phases (cf. Figure 2 and

4Each node of the Segment Tree for dense rank stores the num-
ber of distinct values for its segment. To combine two adjacent seg-
ments, one simply needs to add their distinct value counts and sub-
tract 1 if the neighboring tuples are equal. Note that the Segment
Tree is only used for computing the first result (cf. Appendix D).
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Figure 5: Segment Tree for sum aggregation. Only the red
nodes (7, 13, 20) have to be aggregated to compute the sum of
7, 3, 10, 6, 2, 8, 4

hash group, as shown in Figure 5. In the figure sum is used as
the aggregate, thus the root node stores the sum of all leaf nodes.
The two children of the root store the sums for two equi-width sub
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gregate over an arbitrary range in logarithmic time by using the
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For illustration purposes, Figure 5 shows the Segment Tree as
a binary tree with pointers. In fact, our implementation stores all
nodes of each tree level in an array and without any pointers, as
shown in Figure 4. In this compact representation, which is similar
to that of a standard binary heap, the tree structure is implicit and
the child and parent of a node can be determined using arithmetic
operations. Furthermore, to save even more space, the lowest level
of the tree is the sorted input data itself, and we use a larger fanout
(4 in the figure). These optimizations make the additional space
consumption for the Segment Tree negligible. Additionally, the
higher fanout improves performance, as we show in an experiment
that is described in Section 5.7.

In order to compute an aggregate for a given range, the Seg-
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arrive at the same node. As a result, this procedure stops early for
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only grows. Additionally, queries with frames like current
row and unbounded following or 1 preceding and
unbounded following can also be executed efficiently using
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hash group, as shown in Figure 5. In the figure sum is used as
the aggregate, thus the root node stores the sum of all leaf nodes.
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the red nodes 7, 13, and 20.
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nodes of each tree level in an array and without any pointers, as
shown in Figure 4. In this compact representation, which is similar
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hash group, as shown in Figure 5. In the figure sum is used as
the aggregate, thus the root node stores the sum of all leaf nodes.
The two children of the root store the sums for two equi-width sub
ranges, and so on. The Segment Tree allows to compute the ag-
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the last 7 values of the sequence, we need to compute the sum of
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nodes of each tree level in an array and without any pointers, as
shown in Figure 4. In this compact representation, which is similar
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the child and parent of a node can be determined using arithmetic
operations. Furthermore, to save even more space, the lowest level
of the tree is the sorted input data itself, and we use a larger fanout
(4 in the figure). These optimizations make the additional space
consumption for the Segment Tree negligible. Additionally, the
higher fanout improves performance, as we show in an experiment
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arrive at the same node. As a result, this procedure stops early for
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The details of the traversal algorithm can be found in Appendix C.
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important benefit of the Segment Tree is that it allows
to parallelize arbitrary aggregates, even for running sum
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unbounded following can also be executed efficiently using
the cumulative algorithm by first reversing the sort order. The re-
movable algorithm further expands the set of queries that can be
executed efficiently, but requires an additional ordered tree struc-
ture for min and max aggregates and can still result in quadratic
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Therefore, the analysis might suggest that the Segment Tree al-
gorithm should always be chosen, as it avoids quadratic runtime in
all cases. However, for many simple queries like rows between
1 preceding and current row, the simpler algorithms
perform better in practice because the Segment Tree can incur a
significant overhead both for constructing and traversing the tree
structure. Intuitively, the Segment Tree approach is only beneficial
if the frame frequently changes by a large amount in comparison
with the previous tuple’s frame. Unfortunately, in many cases, the
optimal algorithm cannot be chosen based on the query structure
alone, because the data distribution determines whether building
a Segment Tree will pay off. Furthermore, choosing the optimal
algorithm becomes even more difficult when one also considers
parallelism, because, as mentioned before, the Segment Tree al-
gorithm always scales well in the intra-partition parallelism case
whereas the other algorithms do not.

Fortunately, we have found that the majority of the overall query
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• Naïve evaluation is s l o w! 
• Independent row evaluation 
• No history reuse 

• Accelerators 
• Segment Trees 
• Custom Window APIs 
• Single Value Aggregation 
• Merge Sort Trees 
• Naïve (for testing)

Aggregation Accelerators

CERN Particle Accelerator, Wikimedia Commons

Function Evaluation



• Unsorted frames 

• No ORDER BY 
• Frame is entire partition 
• Only one value (“constant”) 

• We detect this  
• Only compute it once 
•  Copy to all rows 
• Often constant vector

Single Value Aggregation

Alice and the Red Queen, John Tenniel, Public Domain

Function Evaluation



• Window has frame order 

• Aggregate needs another order 

•  DISTINCT arguments 

•  quantile/mad 

• Order-sensitive (first, …) 

•   Doubly ordered tree! 
• Built and queried in parallel

Merge Sort Trees

Basic Merge Sort Tree, from Vogelsgesang et al.

Function Evaluation 

✔
✘

value < 3 ⇒ new distinct value
value ≥ 3 ⇒ repeated value

- - - 1 2 3 0 4

✔ ✘ ✘- - - 1 0 2 3 4✔

sorted ⇒ binary search ⇒ log(n)

Sort pairs
- - - 1 2 3 0 4

- - 1 - 3 2 4 0✔- - - 4✔

Sort 4-tuples
log(n)
levels

Figure 2: A merge sort tree improves query time to
O(=(log=)2) by utilizing a tree of sorted lists.

Another way to think of this counting is as a two-dimensional
range query: The �rst dimension is sorted by the order of the win-
dow frame and �ltering on this dimension �lters the tuples down to
the current window frame. The second dimension is sorted by the
index of the previous occurrence and �ltering on this dimension
excludes duplicate values. This maps the computation of a distinct
count to a two-dimensional range counting query. We now only
need an e�cient data structure for such range counting queries.

Merge sort trees can e�ciently answer such two-dimensional
range counting queries. To arrive at a better asymptotic complexity,
we need a way to count the number of indices smaller than the
given threshold without comparing each individual entry against
the threshold. An obvious solution would be to sort the array and
then use a binary search to locate the threshold value inside the
sorted array. Sorting the array by prevIdcs is not possible, though.
To compute a framed distinct count, we have to count how many
entries inside the window frame are smaller than the threshold. The
array is already sorted by the ORDER BY of the window frame, and
we rely on this order to place all values inside thewindow frame into
the consecutive range prevIdcs[a...b]. Sorting the prevIdcs
array by another criterion would destroy this sort order and inhibit
us from e�ciently identifying all tuples inside the window frame.
Instead, we need to keep both sort orders at the same time.

To solve this issue, we store the same list multiple times, as
visualized in Figure 2. The lowest layer stores the original prevIdcs
array. On top of that, there are multiple partially sorted copies. In
the �rst copy, pairs are sorted; the second copy contains sorted runs
of length 4. For larger input arrays, the tree would have additional
layers, until all numbers are sorted inside a single run. In general,
the tree has O(log=) layers and needs O(= log=) memory. Such a
tree can be e�ciently built bottom-up in O(= log=) by modifying
a merge sort algorithm to preserve the intermediate sorted runs
instead of discarding them. Because of this resemblance of the data
structure with the intermediate results of a merge sort, we call the
resulting data structure a merge sort tree.

One can now use this merge sort tree to e�ciently count the
number of values below a certain threshold in a given window
frame. To do so, the queried range is pieced together from the
various sorted lists. Figure 2 shows such a query for the range [3; 7].
The queried range can be pieced together using the sorted runs
[3; 3] on the lowest level and [4; 7] on the �rst level. For each range,
we can determine how many values are smaller than the given
threshold using a binary search on the corresponding sorted run.
In this example, we execute 2 binary searches.

Figure 3: Fractional cascading: Pointers between layers re-
strict the search ranges on lower layers, reducing query time
to O(= log=).

In general, we need at most 2 binary searches per layer: On the
highest level, we have always exactly one sorted run. On all other
levels, we need at most two runs, one run to the left and one run to
the right of the range already covered on the higher levels. As there
are O(log=) layers and each binary search has O(log=) execution
time, the evaluation of a distinct count for a given window frame
is O((log=)2). For the overall evaluation of a window query, this
gives us an O(=(log=)2) execution time. The construction costs
of O(= log=) for the merge sort tree are dominated by this query
time. We hence need to focus our attention on querying the merge
sort trees to further improve the overall execution time.

Fractional cascading improves this query time to O(= log=)
by avoiding to re-run the binary search on each tree level. The
key idea is to traverse the tree top-down and reuse the result of
the binary search on one level to narrow down the search range
on the next level [14, 15]. Figure 3 illustrates this approach. During
construction of the merge sort tree, we annotate the tree with
additional pointers. When querying the tree to determine a distinct
count, we perform a O(log=) binary search only on the highest
level of the merge sort tree. The additional pointers then allow us
to reuse the result of this binary search to narrow down the search
range on the next �ner-grained level. On the next level, the binary
search pro�ts from the reduced search range to the point that it
runs in constant time. When descending to the next level, we again
reuse the binary search from the now current level, and thereby
turn all except for the �rst binary search into O(1) operations. In
sum, we need O(log=) for the �rst binary search plus O(1) on each
of the O(log=) levels, leading to an overall complexity of O(log=)
per query. The initial top-level binary search cascades down from
the top to the bottom.

To ensure O(1) time for each of the searches on the lower levels,
one can annotate each element on each level with two additional
pointers as visualized in Figure 4. For each element on the upper
level, the pointers locate an element’s sort position on the next level
in the left and right sublist. The pointers point to the largest element
in the sublist which is smaller or equal to the annotated element.
Having located an element on the upper level, one can now �nd
the element’s positions on the next level by simply traversing the
pointer. The additional pointers increase the memory consumption
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• Why is a duck staring at me 
through a plane window?

Questions?
DuckCon #5




