DuckDB
ications in [R

Radboud University § %

MiNet®

EFFLICLENCY AND SCALABLLTY

» [R builds efficient and scalable systems on top of the traditional “ubiquitous” inverted file
implementation and/or specialized data structures like the HNSW. The algorithms that make retrieval
efficient are “hard-coded” (where most systems today depend on Lucene and FAIBS) -

no data independence

= Thisis not a problem if all you do is ad-hoc search using a predefined ranking algorithm (e.g., BM25)
over a predefined, static collection
However...

= What if “ranking text” is a core component in a wide variety of tasks, as we see today? Over varying
collections, dynamically updating?

= Evenin“just” [R experimentation, complexity increases - entities/knowledge bases, whole session
retrieval, multi-stage ranking systems using large collections of embeddings, inference using
transformers (“neural [R")

= Models (like “Wikipedia”) become stale due to data changes over time (“distribution shift")

= “Wikipedia” becomes “Wikipedia-2014”, “Wikipedia-2019”, but... never “Wikipedia-today”

Radboud University %

%
3
9
Topes®

[R on a Relational DBMS: “Olddog"

Miuihleisen et al., Old Dogs Are Great at New Tricks: Column Stores for [R Prototyping (2014)

See also:
= chriskamphuis.com/2019/03/06/teaching-an-old-dog-a-new-trick.html
= github.com/osirrc/olddog-docker

[nh DuckDB:
PRAGMA create fts index

Radboud University § %

&
3
$
Top &

https://dl.acm.org/citation.cfm?id=2609460
https://www.chriskamphuis.com/2019/03/06/teaching-an-old-dog-a-new-trick.html
https://github.com/osirrc/olddog-docker
https://duckdb.org/docs/extensions/full_text_search.html

4|

X %

The OWS.EU Indexer %

¥ Open WebSearch
* X .eu

* o X
=> Build an Index and a Web Graph from a Crawl
=> |nputs: W:FC
= CIFF

= WARC (Crawl output) / Bles
= Parquet (Cleaning pipeline output) Indexer

Porquet
= JSONL (IR datasets in TIRA) flea ———2> U

oche Spark)
e e \ Web Groph
=> Partitioned on metadata like language,
date, “category”, etc. Tﬁw—

=> Output as CIFF files, and Parquet files for nodes and edges of the Web Graph

https://opencode.itdi.eu/openwebsearcheu-public/spark-indexer/
... but... active development in https://opencode.it4i.eu/openwebsearcheu/wp3/indexing/spark-indexer/

Demistifying Indexing the Web @ OWS.EU

https://opencode.it4i.eu/openwebsearcheu/wp3/indexing/spark-indexer/
https://opencode.it4i.eu/openwebsearcheu/wp3/indexing/spark-indexer/

“JUST” AN EXAMPLE (NDEXING JOB

* Indexed the CommonCrawl (April 2021) on our local Spark cluster
e« 70TB in WARCs, 1.4TB after extracting clean text and link

e Index size: 467GB Anchor Text

e Total of 220M documents Is the secret door to
 Partitioned into 50,000 CIFF files Web Search

* Web graph size: ~62GB Effectiveness!

* Includes the anchor text ‘
* Elapsed time: 106h P ‘

e 55h (just over 50%) for parsing WARC files and extracting c8

Feel free to forget everything you
heard about PageRank

DuckDB helps organize the Parquet data smoothly, except for one little thing...
https.//github.com/duckdb/duckdb/discussions/10346#discussioncomment-8258298
Can't combine FILE SIZE BYTES and PARTITION BY for COPY

Radboud University § %

&
3
$
Top &

http://Phttps:/github.com/duckdb/duckdb/discussions/10346
http://Phttps:/github.com/duckdb/duckdb/discussions/10346

ONGOING WORK: LOADING CIFF (NDICES [N DUCKDB

= C[FF uses Protobuf to represent the = Status:
inverted file;
storing the exact same information that the
FTS extension would also create when it
builds an index

o DuckDB database 6x as large

o Does not automatically detect the
natural opportunity to use PFOR-Delta
for the postings

= Goal:

o Use DuckDB for the Parquet metadata https://github.com/arjenpdevries/CIFF2DuckDB
and the inverted file

= Approach:
o Use Google's Protobuf to read the index

o Use Python to hand out term identifiers
and undo gap compression

o Use PyArrow to ingest the data into
DuckDB

Radboud University § %

3
E
§

"omye

https://github.com/arjenpdevries/CIFF2DuckDB

MOVE PYTHON TRANSFORMATION TO SQL?

= Getting document identifiers from the gap-encoded ones:

select rowid, termid, docid, docid - lag(docid,1,0)
over (partition by termid order by rowid)

from postings

order by rowid;

» Back to gap-encoded document identifiers:

select rowid, termid, docid, sum(docid)
over (partition by termid order by rowid)

from postings
order by rowid;

= Beautiful SQL!
o But... no effect on the selection of the compression algorithm (yet)

Radboud University § %3‘2

%
MiNet®

GEESEDB: A PYTHON GRAPH ENGINE FOR EXPLORATION AND SEARCH

GeeseDB in an easy to install, self contained Python package. [t contains topics and relevance
judgements out-of-the-box (yet to do: integrate with MacAvaney et al.'s ir_datasets)

= First stage retrieval is directly supported out-of-the-box
= Load your data and create a first stage ranker in only a few lines of code

= Datais served in a format suited for later retrieval stages (see “DuckDB slide” ahead)

= Easy data exploration is supported through both SQL and a graph query language based on Cypher

Radboud University § %

%
3
9
Topes®

CYPHER VS. SQL

MATCH (d:docs)-[]-(:authors)-[]-(d2:docs)
WHERE d.collection_id = "96ab542e"
RETURN DISTINCT d2.collection_id

Figure 4: An example cypher query that finds all documents
that were written by the same author that wrote the docu-
ment with the collecion_id “96ab542¢”

Radboud University § %

&

E

$
Topes®

SIMLARITY SEARCH [N HIGH DIMENS[ONS

Key operation in modern Alsolutions
Occurs in many places in modern Allapplications, whenever the input data is
represented using “embeddings”

Embeddings can be constructed in many different ways - where the classic
example is Word2Vec
Great way to learn about W2V: WEVH Word Embedding Visual [hspector

Context-aware embeddings are drawn from large language models like BERT

Radboud University § %

%
3
9
Topes®

https://ronxin.github.io/wevi/

https://dmitry-kan.medium.com/neural-search-frameworks-a-head-to-head-comparison-976aa6662d20

LIBRARLES, VECTOR DATABASES, FRAMEWORKS, ...

Encoders: Transformers, Clip, GPT3... + Mighty

Neural frameworks: Haystack, Jina.Al, Vectara, Hebbia.Al, txtai ...

Vector Databases: Milvus, Weaviate, Pinecone, GSI, Qdrant, Vespa, Vald, Elastiknn...

KNN / ANN algorithms: HNSW, PQ, IVF, LSH, Zoom, DiskANN, BuddyPQ ...

Radboud University § %z

VECTOR DATABASES FUTURE?

= Personal prediction:
o Eventually, vector databases will be “swallowed” by general purpose database solutions
o Unclear however what the data model will be! Will relational win again?

= Real solution:

o Revive and upgrade BOND (Efficient k-NN Search on Vertically Decomposed Data, SIGMOD 2002)
= Quicker "solution":

o Run a FABS index together with a DuckDB database

o Use an extension couple the embeddings-in-the-index together with the data-in-the-database

o FALBS limiting HNSW scope using IDselectorBatch/Array/Bitmap from DuckDB

[h development, repo not yet public... but coming real soon!
https://github.com/arjenpdevries/faiss

Radboud University %

%
3
9
Topes®

http://Ohttps:/github.com/arjenpdevries/faiss

ENTOY LINKING
MMEAD

= MMEAD is a specification for entity links for MSMARCO
= JSON specification for sharing and using entity links

= Pretrained Wikipedia2Vec embeddings
= Python library to use both resources (entity links and embeddings) easily

= MS Marco V1 and V2, passage and doc, tagged with entity annotations
= RE(B)L
= BLINK (only V1 passage completed right now)

= Ready to use!

Chris Kamphuis, Aileen Lin, Siwen Yang, Jimmy Lin, Arjen de Vries and Faegheh Hasibi.

Q DuckDB MMEAD: MS MARCO Entity Annotations and Disambiguations. [h SIGIR 2023.
https://github.com/informagi/MMEAD

Radboud University %ﬁ Arjen P. de Vries | 13

k7 &
MiNet®

https://github.com/informagi/MMEAD

