
hi, i’m lloyd

1987 2023201220031994

Data is Rectangular
(and other limiting misconceptions)

Humans think in rectangular calculations

Operations within the Rectangle

filtering projecting

group by / aggregate windowing

Join rectangles New rectangle Calculations

In SQL Joins, produce a new rectangle

orders

order_id order_date shipping_cost user_id

1 2022-01-01 2 1

2 2022-01-01 3 2

3 2022-01-02 1 1

4 2022-01-02 2 3

order_items

item_id order_id item price

1 1 Chocolate 2

2 1 Twizzler 1

3 2 Chocolate 2

4 2 M and M 1

5 3 Twizzler 1

6 4 Fudge 3

7 4 Skittles 1

orders

order_id order_date shipping_cost user_id

1 2022-01-01 2 1

2 2022-01-01 3 2

3 2022-01-02 1 1

4 2022-01-02 2 3

total_shipping

total_revenue

Let’s measure two things, from sales…

SELECT

 SUM(shipping_cost) AS total_shipping

FROM ‘orders.csv

total_shipping

total_shipping

8

SELECT

 SUM(price) AS total_revenue

FROM ‘items.csv’;

total_revenue

total_revenue

11

SELECT

 order_date,

 SUM(shipping_cost) AS total_shipping

FROM ‘orders.csv’

GROUP BY 1

ORDER BY 1

order_date total_shipping

2022-01-01 5

2022-01-02 3

total_shipping by date

SELECT

 order_date,

 sum(price) AS total_revenue

FROM ‘orders.csv’ AS orders

JOIN ‘items.cvs’ AS items on

 orders.order_id = items.order_id

GROUP BY 1

ORDER BY 1

total_revenue by date

order_date total_revenue

2022-01-01 6

2022-01-02 5

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

How does revenue relate to shipping?

SELECT

 orders.order_date,

 SUM(items.price) AS total_revenue,

 SUM(orders.shipping_cost) AS total_shipping

FROM ‘orders.csv’ AS orders

JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id

GROUP BY 1

ORDER BY 1

order_date total_revenue total_shipping

2022-01-01 6 10

2022-01-02 5 5

SELECT

 orders.order_date,

 SUM(items.price) AS total_revenue,

 SUM(orders.shipping_cost) AS total_shipping

FROM ‘orders.csv’ AS orders

JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id

GROUP BY 1

ORDER BY 1

order_date total_revenue total_shipping

2022-01-01 6 10

2022-01-02 5 5
WRONG

NOT HIRED

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

Combine Result Rectangles
(Traditional data warehousing)

order_date total_shipping

2022-01-01 5

2022-01-02 3

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

order_date total_revenue

2022-01-01 6

2022-01-02 5

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

order_date total_revenue

2022-01-01 6

2022-01-02 5

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

order_date total_shipping

2022-01-01 5

2022-01-02 3

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

user_id total_revenue total_shipping

1 4 3

2 3 3

3 4 2

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

SELECT
 order_user_id.user_id,
 total_revenue,
 total_shipping
FROM orders_user_id
JOIN items_user_id
 ON orders_user_id.user_id =
 items_user_id.user_id

WITH items_user_id AS (
 SELECT
 user_id,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_user_id AS (
 SELECT
 user_id,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

SELECT
 order_user_id.use_id,
 total_revenue,
 total_shipping
FROM orders_user_id
JOIN items_user_id
 ON orders_user_id.user_id =
 items_user_id.user_id

WITH items_user_id AS (
 SELECT
 user_id,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_user_id AS (
 SELECT
 user_id,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

user_id total_shipping
1 3
2 3
3 2

user_id total_revenue total_shipping
1 4 3
2 3 3
3 4 2

user_id total_revenue
1 4
2 3
3 4

card_id
name
address
phone
email
postal_code
phone

order_id
unit_price
quantity
discount
date
region purchase_id

receipt
tax
currency
price_sold
credit_card
cardholder
time_id

promotion_id
time_id
promo_type
promo_value
promo_cost

supplier_id
supplier_name
region
address
postal_code
email
phone

product_id
name
category
season
cost
price

Fact Table

Traditional Data
Warehousing
Star Schema

Enter Malloy

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Join data in a similar way to SQL.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Join data in a similar way to SQL.

Write aggregate calculations with pathing
to node in the network.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Join data in a similar way to SQL.

Write aggregate calculations with pathing
to node in the network.

Aggregate calculations are always correct

run: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

run: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

SOURCE

Malloy

run: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

LOCAL TO ITEMS

Malloy

run: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

LOCAL TO ORDERS

run: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

run: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

run: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: user_id
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

user_id total_revenue total_shipping
1 4 3
2 3 3
3 4 2

Dimensional Freedom
Produce results from anywhere in the join network

SELECT
 base.”order_date” AS “order_date”,
 COALESCE(SUM(items_0.”price”),0) AS “total_revenue”,
 COALESCE((
 SELECT sum(a.val) AS value
 FROM (
 SELECT UNNEST(list(distinct {key:base.”__distinct_key”,
val: base.”shipping_cost”})) a
)
),0) AS “total_shipping”
FROM (SELECT GEN_RANDOM_UUID() AS __distinct_key, * FROM orders.csv
AS x) AS base
LEFT JOIN items.csv AS items_0
 ON base.”order_id”=items_0.”order_id”
GROUP BY 1
ORDER BY 1 ASC NULLS LAST

Malloy’s reusability is a source

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 measure:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources are named

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 measure:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources describe the join relationships

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 measure:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 measure:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources describe the calculations (aggregate and scalar)

Using a source makes queries very simple

run: orders_items -> {
 group_by: order_date
 aggregate: total_revenue, total_shipping
 order_by: 1
}

Using a source makes queries very simple

run: orders_items -> {
 group_by: order_date
 aggregate: total_revenue, total_shipping
 order_by: 1
}

run: orders_items -> {
 group_by: user_id
 aggregate: total_revenue, total_shipping
 order_by: 1
}

Using a source makes queries very simple

run: orders_items -> {
 group_by: order_date
 aggregate: total_revenue, total_shipping
 order_by: 1
}

run: orders_items -> {
 group_by: user_id
 aggregate: total_revenue, total_shipping
 order_by: 1
}

run: orders_items -> {
 aggregate: total_revenue
}

column_name column_type null key default extra

order_id INTEGER YES

order_date DATE YES

shipping_cost INTEGER YES

user_id INTEGER YES

items STRUCT(item_id INTEGER, item
VARCHAR, price INTEGER)[] YES

[
 {
 “order_id”: 1,
 “order_date”: “2022-01-01”,
 “shipping_cost”: 2,
 “user_id”: 1,
 “items”: [
 {
 “item_id”: 1,
 “item”: “Chocolate”,
 “price”: 2
 },
 {
 “item_id”: 2,
 “item”: “Twizzler”,
 “price”: 1
 }
]
 },
 {
 “order_id”: 2,
 “order_date”: “2022-01-01”.

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

run: table(‘duckdb:orders_items.parquet’)
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

order_date total_revenue total_shipping by_items

2022-01-01 6 5 item total_revenue

Chocolate 4

Twizzler 1

M and M 1

2022-01-02 5 3 item total_revenue

Fudge 3

Skittles 1

Twizzler 1

query:
table(‘duckdb:orders_items.parquet’)
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 nest: by_items is {
 group_by: items.item
 aggregate: total_revenue is
 items.price.sum()
 }
 order_by: 1
}

WITH stage0 AS (
 SELECT
 group_set,
 CASE WHEN group_set IN (0,1) THEN
 base. "order_date"
 END as "order_date_0"
 CASE WHEN group_set=0 THEN
 COALESCE(SUM(base.items [items_0.__row_id]."price"),0)
 END as "total_revenue_0"
 CASE WHEN group_set=0 THEN
 COALESCE((
 SELECT sum(a.val) as value
 FROM (
 SELECT UNNEST(list(distinct {key:base."__distinct_key" val: base."shipping_cost"})) a
)
),0)
 END as "total_shipping__0",
 CASE WHEN group_set=1 THEN
 base.items[items_0.__row_id]."item"
 END as "item__1",
 CASE WHEN group_set=1 THEN
 COALESCE(SUM(base.items[items_0.__row_id]."price"),0)
 END as "total_revenue__1"
 FROM (SELECT GEN_RANDOM_UUID() as __distinct_key, *
 FROM orders_items.parquet as x) as base
 LEFT JOIN (select UNNEST(generate_series(1,100000,
 -- (SELECT genres_length FROM movies limit 1),
 1)) as __row_id) as items_O ON items_0.__row_id <=
 array_length(base."items")
 CROSS JOIN (SELECT UNNEST (GENERATE_SERIES(0,1,1)) as group_set) as group_set
 GROUP BY 1,2,5
)
SELECT
 "order_date__0" as "order_date"
 MAX(CASE WHEN group_set=0 THEN total_revenue 0 END) as
 "total revenue",
 MAX(CASE WHEN group_set=0 THEN total_shipping_0 END) as
 "total_shipping",
 COALESCE(LIST({
 "item": "item__1",
 "total_revenue": "total revenue_1"} ORDER BY
 "total_revenue__1" desc NULLS LAST) FILTER (WHERE group_set=1), []) as "by items"
FROM __stage0
GROUP BY 1
ORDER BY 1 ASC NULLS LAST

Demo
https://github.dev/malloydata/patterns

BigQuery DuckDB Postgres

Malloy supports Databases

The Malloy Language

Semantic data modeling

Nested Queries

Pipelined queries
(even when nested)

Level of detail Calculations
(ungrouped aggregates)

Aggregate locality

Annotations

Window Functions

Transformation
Malloy in SQL/SQL in Malloy

Specialized Nested Renderer

Standard Cross SQL function library

One Malloy is One SQL query

Sampled Dimensional Indexes

Filtered Aggregates

Partial relational expressions

Automatic modeling of nested sources

Malloy runs in / as a

http://www.malloydata.dev

ltabb@google.com

http://www.malloydata.dev

Thanks!

Data is Rectangular
(and other limiting misconceptions)

Force

dBASE

LiveWire

LTool (perl)

LTool (python)

El Tool (php)

Looker

Malloy

1987

1992

1994

2003

2007

2009

2012

2020

In SQL Joins, produce a new rectangle

In SQL joins produce
a new rectangle.

FIRST: Joins tables
expand rows to first

produce a new
rectangle

THEN: perform
Rectangular

operations up on the
new rectangle.

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources describe the calculations (aggregate and scalar)

Malloy runs in / as a

Python
Library

Jupyter
Notebooks

Malloy
Composer

VS Code Dev
Environment

VS Code
Notebooks

Command
Line

NPM
Library

https://docs.google.com/file/d/1-lEUFpiXYd4HFOvNCLqFkKQ5XI4gcLxG/preview

https://docs.google.com/file/d/1-tSq3NDnhYdihB7mzhNHIGv79fkYZmx4/preview

https://docs.google.com/file/d/102wzNs2xHRUbKscR60rU_BbKikDhWfet/preview

https://docs.google.com/file/d/1031TAnJSZImx9G51Ng8R3g56XyHTBOO2/preview

