hi, i'm lloyd

1987 1994 2003 2012 2023

Data is Rectangular

(and other limiting misconceptions)

Humans think in rectangular calculations

Operations within the Rectangle
4)
- J

In SQL Joins, produce a new rectangle

orders

orders order_items

Let’'s measure two things, from sales...

total_shipping

total_revenue

total_shipping

SELECT
SUM(shipping_cost) AS total_shipping total_shipping

FROM ‘orders.csv

total_revenue

SELECT
SUM(price) AS total_revenue total_revenue

FROM ‘items.csv’;
1

total_shipping by date

SELECT
order_date, order_date total_shipping
SUM(shipping_cost) AS total_shipping 2022-01-01 c
FROM ‘orders.csv’
2022-01-02 &

GROUP BY 1
ORDER BY 1

total_revenue by date

SELECT
order_date order_date total_revenue
sum(price) AS total_revenue 2022-01-01 6

FROM ‘orders.csv’ AS orders

JOIN ‘items.cvs’ AS items on 2022-01-02 >
orders.order_id = items.order_id

GROUP BY 1

ORDER BY 1

How does revenue relate to shipping?

order_date total_revenue total_shipping
2022-01-01 6 3)

2022-01-02 S 3

SELECT
orders.order_date,
SUM(items.price) AS total_revenue,
SUM(orders.shipping_cost) AS total_shipping
FROM ‘orders.csv’ AS orders
JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id
GROUP BY 1
ORDER BY 1

order_date total_revenue total_shipping
2022-01-01 6 10

2022-01-02 5 5

SELECT
orders.order_date,
SUM(items.price) AS total_revenue,
SUM(orders.shipping_cost) AS total_shipping
FROM ‘orders.csv’ AS orders
JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id
GROUP BY 1
ORDER BY 1

order_date total_revenue total_shipping
2022-01-01 6 10

2022-01-02 5 S

SELECT *

FROM ‘orders.csv’

LEFT JOIN

order_id
1

2

order_date
2022-01-01
2022-01-01
2022-01-02
2022-01-02
2022-01-02
2022-01-02

2022-01-02

orders

shipping_cost
2

3

user_id
1

2

item_id
2

4

order_id
1

2

‘items.csv’ AS items ON orders.order_id = items.order_id

item
Twizzler
Mand M
Twizzler
Skittles
Chocolate
Chocolate

Fudge

price

SELECT *
FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

SELECT *
FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

2022-01-02

Order rows are duplicated by the JOIN so computation is overstated.

SELECT *
FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

Combine Result Rectangles

(Traditional data warehousing)

WITH orders_date AS (

SELECT
order_date, order date total_shipping
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’ 2022-01-01 5
GROUP BY 1

), 2022-01-02 3

WITH items_date AS (

SELECT
order_date, order date total_revenue
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders 2022-01-01 6
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id 2022-01-02 3

GROUP BY 1

SELECT
orders_date.order_date,

total_revenue, order_date total revenue total_shipping
total_shipping
FROM orders_date 2022-01-01 6 5)
JOIN items_date
ON orders_date.order_date = 2022-01-02 S 3

items_date.order_date

WITH orders_date AS (order_date total_shipping
SELECT - -

order_date,

sum(shipping_cost) AS total_shipping 2022-01-01 5
FROM ‘orders.csv’
GROUP BY 1 2022-01-02 3

),

WITH items_date AS (

SELECT order date total revenue
order_date, = =

sum(price) AS total_revenue

FROM ‘orders.csv’ AS orders 2022-01-01 6
JOIN ‘items.csv’ AS items

ON orders.order_id = items.order_id
CROUP BV 2022-01-02 5

)

SELECT . q
orders_date.order_date, order_date total_revenue total_shipping
total_revenue,
total_shipping 2022-01-01 6 5

FROM orders_date
JOIN items_date
ON orders_date.order_date = 2022-01-02 5 3

items_date.order_date

WITH orders_date AS (
SELECT
order_date,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),

WITH items_date AS (
SELECT
order_date,
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id
GROUP BY 1

)

SELECT
orders_date.order_date,
total_revenue,
total_shipping

FROM orders_date

JOIN items_date
ON orders_date.order_date =

items_date.order_date

WITH orders_date AS (
SELECT
order_date,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),

WITH items_date AS (
SELECT
order_date,
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id
GROUP BY 1

)

SELECT
orders_date.order_date,
total_revenue,
total_shipping

FROM orders_date

JOIN items_date
ON orders_date.order_date =

items_date.order_date

WITH OFAEFSIUSEFTEd AS (

SELECT

sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),
WITH FEEmSIUSErIid As (

SELECT
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id
GROUP BY 1

)
SELECT

order_user_id.user_id,
total_revenue,
total_shipping
FROM
JOIN
0]\

WITH ordersiuseriid As (

SELECT user_id
user_id, 1
sum(shipping_cost) AS total_shipping

FROM ‘orders.csv’ 2

GROUP BY 1 3

),
WITH EEEmSIUSEFIEd As (

SELECT
user_id, user_id
sum(price) AS total_revenue 1
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items 2
ON orders.order_id = items.order_id)
GROUP BY 1
)
SELECT

order_user_id.use_id, user_id

total_revenue,
total_shipping
FROM
JOIN
ON

total_shipping
3
3
2

total_revenue
4
3
4

total_revenue
4
3
4

total_shipping
3
3
2

Traditional Data
Warehousing
Star Schema

card_id
name
address
phone

email
postal_code
phone

supplier_id

supplier_name

region
address
postal_code
email

phone

order_id
unit_price
quantity
discount
date
region

Fact Table

product_id
name
category
season
cost

price

purchase_id
receipt

tax
currency
price_sold
credit_card
cardholder
time_id

promotion_id
time_id
promo_type
promo_value
promo_cost

A\

Enter Malloy

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Join data in a similar way to SQL.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Join data in a similar way to SQL.

Write aggregate calculations with pathing
to node in the network.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Join data in a similar way to SQL.

Write aggregate calculations with pathing
to node in the network.

Aggregate calculations are always correct

Malloy

run: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

run:
SOURCE

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

run: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
}

> {
group_by: order_date
aggregate:
total_revenue is items.price.sum() LOCALTO ITEMS
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

run: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
}

->
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum() LOCAL TO ORDERS
order_by: 1

}

Malloy

run: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

run: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
}

-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

order_date total_revenue total_shipping

2022-01-01 6 S
2022-01-02 5 3

Malloy

run: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: user_id
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1
}
user i total_revenue total_shipping
1 4 3
2 3 K

& 4 2

Dimensional Freedom

Produce results from anywhere in the join network

Malloy’s reusability is a source

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
measure:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Sources are named

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
measure:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Sources describe the join relationships

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
measure:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Sources describe the calculations (aggregate and scalar)

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
measure:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Using a source makes queries very simple

run: orders_items -> {
group_by: order_date
aggregate: total_revenue, total_shipping
order_by: 1

b

Using a source makes queries very simple

run: orders_items -> {
group_by: order_date
aggregate: total_revenue, total_shipping
order_by: 1

b

run: orders_items -> {
group_by: user_id
aggregate: total_revenue, total_shipping
order_by: 1

b

Using a source makes queries very simple

run: orders_items -> {
group_by: order_date
aggregate: total_revenue, total_shipping
order_by: 1

b

run: orders_items -> {
group_by: user_id
aggregate: total_revenue, total_shipping
order_by: 1

b

run: orders_items -> {
aggregate: total_revenue

}

key

column_name column_type null
order_id ' INTEGER YES
order_date = DATE YES
shipping_cost = INTEGER YES
user_id = INTEGER YES

items STRUCT(item_id INTEGER, item YES

VARCHAR, price INTEGER)[]

run: table(‘duckdb:orders_items.parquet’)

-> { order_date
group_by: order_date 2022-01-01
aggregate:

total_revenue is items.price.sum() 2022-01-02
total_shipping is shipping_cost.sum()
order_by: 1

b

total_revenue
6

5

total_shipping
5

3

query:
table(‘duckdb:orders_items.parquet’)
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

order_by: 1
}

WITH stage@ AS (
SELECT
group_set,
CASE WHEN group_set IN (@,1) THEN
base. "order_date"
END as "order_date_0"
CASE WHEN group_set=0 THEN
COALESCE(SUM(base.items [items_@.__row_id]."price"),0)
END as "total_revenue_0"
CASE WHEN group_set=0 THEN
COALESCE((
SELECT sum(a.val) as value
FROM (
SELECT UNNEST(list(distinct {key:base."__distinct_key" val: base."shipping_cost"})) a
)

),0)
END as "total_shipping__0",

CASE WHEN group_set=1 THEN
base.items[items_0.__row_id]."item"
END as "item__1",

CASE WHEN group_set=1 THEN
COALESCE(SUM(base.items[items_0.__row_id]."price"),0)
END as "total_revenue__1"

FROM (SELECT GEN_RANDOM_UUID() as __distinct_key, *
FROM orders_items.parquet as x) as base
LEFT JOIN (select UNNEST(generate_series(1,100000,
-- (SELECT genres_length FROM movies limit 1),
1)) as __row_id) as items_O ON items_0.__row_id <=
array_length(base."items")
CROSS JOIN (SELECT UNNEST (GENERATE_SERIES(@,1,1)) as group_set) as group_set
GROUP BY 1,2,5

)
SELECT
"order_date__0" as "order_date"
MAX(CASE WHEN group_set=0 THEN total_revenue @ END) as
"total revenue",
MAX(CASE WHEN group_set=0 THEN total_shipping_0 END) as
"total_shipping",
COALESCE (LIST({
"item": "item__1",
"total_revenue": "total revenue_1"} ORDER BY
"total_revenue__1" desc NULLS LAST) FILTER (WHERE group_set=1), []) as "by items"
FROM __stage®
GROUP BY 1
ORDER BY 1 ASC NULLS LAST

Demo

https://github.dev/malloydata/patterns

Malloy supports Databases

BigQuery DuckDB Postgres

Window Functions Sampled Dimensional Indexes

One Malloy is One SQL query Nested Queries

Automatic modeling of nested sources

Semantic data modeling

Aggregate locality
Level of detail Calculations The Ma I on Language

(ungrouped aggregates)

Filtered Aggregates Transformation

Annotations Malloy in SQL/SQL in Malloy

. . Partial relational expressions
Standard Cross SQL function library

Pipelined queries
Specialized Nested Renderer (even when nested)

Malloy runsin/as a

http://www.malloydata.dev

ltabb@google.com

http://www.malloydata.dev

Thanks!

Data is Rectangular

(and other limiting misconceptions)

Netscape

LiveWire Pro

Force
1987

dBASE
1992

LiveWire
1994

LTool (perl)
2003

LTool (python)
2007

El Tool (php)
2009

Looker
2012

Malloy
2020

In SQL Joins, produce a new rectangle

FIRST: Joins tables THEN: perform
In SQL joins produce expand rows to first Rectangular
a new rectangle. produce a new operations up on the

rectangle new rectangle.

Sources describe the calculations (aggregate and scalar)

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Malloy runsin/as a

3
- nem
VS Code Dev VS Code Command NPM
Environment Notebooks Line Library
Python Jupyter Malloy

Library Notebooks Composer

https://docs.google.com/file/d/1-lEUFpiXYd4HFOvNCLqFkKQ5XI4gcLxG/preview

https://docs.google.com/file/d/1-tSq3NDnhYdihB7mzhNHIGv79fkYZmx4/preview

O malloydata/try-malloy: Quick stz X + v — H X

S cC 0O @ github.com/malloydata/try-malloy < w o & 0O

Pull requests Issues Codespaces Marketplace Explore

& malloydata / try-malloy P R EditPins v OWatch 1~ ¥ ok 0 v ¥ sar 1~

<> Code (Issues I1 Pullrequests (Actions 3 Projects [0 Wiki © Security |~ Insights & Settings

¥ main ~ P 2branches ©)0tags Go to file Add file ~ m About 8

Quick start for trying Malloy in VS Code

Your main branch isn't protected in the browser
0 Pr f shing or deletion. or require status Protect this branch X
s & www.malloydata.dev

) Readme

& bporterfield wrap at 80 column v 37eefsf 2wee 5B MIT license

5B Security cy
B .vscode nitial try malloy copy ¢ 1star
[3 LICENSE icense update with proper copyright name st month ® 1watching

0 forks

[README.md nk to quick start 3 weeks ag v
[§ airports.csv nitial try malloy copy ast rr

Contributors 2
[airports.malloy wrap at 80 columr 2 weeks ago

4 bporterfield Ben Porterfield
‘= README.md V4

f lloydtabb lloyd tabb

Trv Mallov

https://docs.google.com/file/d/102wzNs2xHRUbKscR60rU_BbKikDhWfet/preview

https://docs.google.com/file/d/1031TAnJSZImx9G51Ng8R3g56XyHTBOO2/preview

