
From REST API to Iceberg Lakehouse:
ELT with Python, dlt and DuckDB

■ 👋My name is Marcin. I’m the CTO at dltHub

■ This talk:

■ What is dlt?

■ Our journey with DuckDB & why we work well together

■ Add “T” to “EL”? Why “T” in Python?

■ Demo

Introduction

What is dlt?
dlt - data loading tool
● an open-source Python library
● automates schema evolution, normalization, and data loading.

dlt is code
● Any Python developer can do data engineering tasks

dlt + DuckDB: how it started
■ Struggling with onboarding and being understood :)
■ We see DuckDB in early 2023
■ Next week all our docs converted to DuckDB and new destination implemented (using

INSERT statement, that was before dlt supported parquet!)
■ Week later we are at duckcon#2 to see who builds it!

Why we fit together
■ Library, not a platform. No backend, no containers.
■ Runs everywhere.
■ Data first! See and touch data all the time.
■ Local workflows.
■ How we use DuckDB?

■ Onboarding, docs, education - this is how we grow.

■ Local analytics, local testing

■ Data destination + MotherDuck + DuckLake (coming in days)

■ Data source: fast and robust csv, parquet and json reading

■ NEW! (dlt.transformation) Query Engine for cloud storage

Why we add “T” to “EL” in Python?
■ E(t)L vs. ELT

■ Convert Python scripts into robust pipelines with minimal changes
■ Keep using pandas, dask, arrow (eager transformations)
■ Single tool: Python code. All your libraries available
■ Universal schema, query in ibis, narwhals, SQL, SQLGlot…
■ Column lineage, annotation propagation

Introduction

● 👋My name is Shreyas. I’m a Developer Advocate at dltHub

● Previous Experience:

Data Engineer

Data Scientist

Data Analyst

Today’s Takeaways

● Tackling common ELT challenges

● Build and test prod-ready ELT pipelines using dlt and DuckDB

● Transformation of raw data using Ibis, SQL and Arrow

● Load data to Iceberg or Delta Lake tables in local filesystem

● Load data into Iceberg tables in cloud with dlt+ using built-in catalog support

Challenges of ELT

Data complexity

● Deeply nested data

● Large datasets

Challenges of ELT

Transformation
complexity

● Hard to reuse SQL
scripts-tied to
schemas/pipelines

● Limited Support for
Non-SQL Logic

Challenges of ELT

Cost management

● Compute-intensive
transforms

● Repeated
transformations during
testing

Challenges of ELT

Governance and observability

● Schema evolution

● Pipeline trace-monitor,
debug, metrics

● Track PII, lineage,
contracts

Challenges of ELT

Developer experience

● ETL tools are
declarative

● Hard to test SQL
functions-no
breakpoints, print

● No local dev Loop-
pipelines tested in
prod env

ELT, but without the pain
Local-first Dev experience

● dlt is imperative, pythonic

● Extract, load, transform
(DuckDB engine)-local FS as
Iceberg, Delta Lake or
Parquet

● Test pipelines locally-no
cost

ELT, but without the pain

Schema and Data Contract

ELT, but without the pain

Governance and observability

● dlt trace-detailed
execution record of ELT

● apply_hints() to tag PII
fields, enforce constraints

● Metadata flows
automatically through ELT

ELT, but without the pain
Seamless transition to
production

ELT, but without the pain
Flexible transformations

OSS ELT Architecture

End to end data pipeline using
dlt and DuckDB demo

Implementation status: EXPERIMENTAL
■ Still incorporating friendly testing feedback.
■ Part of the library, user interface not public
■ Link to our demo:
■ Read the docs: https://dlthub.com/docs/general-usage/transformations

https://dlthub.com/docs/general-usage/transformations
https://dlthub.com/docs/general-usage/transformations
https://dlthub.com/docs/general-usage/transformations

dlt+ ELT Architecture

Thank You!
Any Questions?

